Notes
Notes - notes.io |
Antifreeze glycoproteins (AFGPs) are able to bind to ice, halt its growth, and are the most potent inhibitors of ice recrystallization known. The structural basis for AFGP's unique properties remains largely elusive. Here we determined the antifreeze activities of AFGP variants that we constructed by chemically modifying the hydroxyl groups of the disaccharide of natural AFGPs. Using nuclear magnetic resonance, two-dimensional infrared spectroscopy, and circular dichroism, the expected modifications were confirmed as well as their effect on AFGPs solution structure. We find that the presence of all the hydroxyls on the disaccharides is a requirement for the native AFGP hysteresis as well as the maximal inhibition of ice recrystallization. The saccharide hydroxyls are apparently as important as the acetyl group on the galactosamine, the α-linkage between the disaccharide and threonine, and the methyl groups on the threonine and alanine. We conclude that the use of hydrogen-bonding through the hydroxyl groups of the disaccharide and hydrophobic interactions through the polypeptide backbone are equally important in promoting the antifreeze activities observed in the native AFGPs. These important criteria should be considered when designing synthetic mimics.The role of water in biological proton-coupled electron transfer (PCET) is emerging as a key for understanding mechanistic details at atomic resolution. Here we demonstrate 17O high-frequency electron-nuclear double resonance (ENDOR) in conjunction with H217O-labeled protein buffer to establish the presence of ordered water molecules at three radical intermediates in an active enzyme complex, the α2β2 E. coli ribonucleotide reductase. Our data give unambiguous evidence that all three, individually trapped, intermediates are hyperfine coupled to one water molecule with Tyr-O···17O distances in the range 2.8-3.1 Å. The availability of this structural information will allow for quantitative models of PCET in this prototype enzyme. The results also provide a spectroscopic signature for water H-bonded to a tyrosyl radical.In order to mitigate the advancing effects of environmental pollution and climate change, immediate action is needed on social, political, and industrial fronts. One segment of industry that contributes significantly to this current crisis is bulk chemical production, where fossil fuels are primarily used to drive reactions at high temperatures and pressures. Toward mitigating the environmental impact of these processes, solar energy has shown promise as a clean and renewable alternative for the photocatalytic synthesis of chemicals. In recent decades, plasmonic materials have emerged as candidates for making this a reality. Because of their unique and tunable interactions with light, plasmonic materials can be used to create energy-rich nanoscale environments. In fact, there is a growing library of chemical reactions that can utilize this plasmonic energy to drive industrially relevant chemistries under standard ambient conditions. However, the efficiency of these reactions is typically low, and a lack of mege transfer mechanism and role of heating in the plasmon-mediated dimerization of 4-nitrobenzenethiol. Importantly, from this work we conclude that direct charge transfer, not heating, may play a significant role in driving many plasmon-driven reactions. Despite these recent insights, more work is needed in order to obtain a comprehensive understanding of the broad range of chemistries accessible in plasmon-molecule systems. In the future, our continued development of these SERS-based techniques shows promise in answering questions regarding direct charge transfer, resonance energy transfer, and excitation conditions in plasmon-mediated chemistries.Si is being actively developed as one of the most promising high-capacity anodes for next-generation lithium-ion batteries (LIBs). However, low cycling coulombic efficiency (CE) due to the repetitive growth of the solid electrolyte interphase (SEI) film is still an issue for its application in full batteries. selleck chemicals llc Here, we propose a strategy to in situ form an artificial solid electrolyte interphase (ASEI) on the ferrosilicon/carbon (FeSi/C) anode surface by a purposely designed nucleophilic reaction of polysulfides with vinylene carbonate (VC) and fluoroethylene carbonate (FEC) molecules. The as-formed ASEI layer is mechanically dense and ionically conducting and therefore can effectively prevent the electrolyte infiltration and decomposition while allowing Li+ transport across, thus stabilizing the interface of the FeSi/C anode. As a result, the ASEI-modified FeSi/C anode exhibits a large reversible capacity of 1409.4 mA h g-1, an excellent cycling stability over 650 cycles, and a greatly elevated cycling CE of 99.8%, possibly serving as a high-capacity anode of LIBs.Intravesical therapy for the treatment of superficial urinary bladder tumors is promising. However, it is also challenging, due to bladder contraction and relaxation and drug elimination via urination or dilution by urine production. We developed a biodegradable drug-eluting device positioned in the renal pelvis as an alternative strategy for bladder instillation. The urine drains from the renal pelvis into the ureter, collects the eluted drug, and transports it into the bladder. The combination of the renal pelvis and the bladder creates a two-compartment system. The drug is administered into the depot compartment, the renal pelvis, and is instantly and homogeneously distributed into the central compartment, the bladder. This results in an increase in its residence time and in gradual adsorption into the urothelium. The device is inserted through the ureter, followed by upset bulging after reaching the renal pelvis in order to guarantee fixation, while preventing urinary obstruction. The device is made of electrospun poly(lactic-co-glycolic acid) (PLGA) fibers that encapsulate a chemotherapeutic drug, cisplatin (1.17-2.34% w/w). Experimental studies of the stresses developed during the bulging and simulations of the urine flow interaction with the device demonstrated structural longevity and operational safety of the device. Sustained release of 94% of the device content was demonstrated after 1 week in vitro with a flow rate of 30 mL/h. We believe that the drug-eluted device may offer a significant advantage over existing therapies for treatment of nonmuscle invasive bladder cancer.
My Website: https://www.selleckchem.com/products/eidd-2801.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team