Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Multi-label data often involve features with high dimensionality and complicated label correlations, resulting in a great challenge for multi-label learning. Feature selection plays an important role in multi-label learning to address multi-label data. Exploring label correlations is crucial for multi-label feature selection. Previous information-theoretical-based methods employ the strategy of cumulative summation approximation to evaluate candidate features, which merely considers low-order label correlations. In fact, there exist high-order label correlations in label set, labels naturally cluster into several groups, similar labels intend to cluster into the same group, different labels belong to different groups. However, the strategy of cumulative summation approximation tends to select the features related to the groups containing more labels while ignoring the classification information of groups containing less labels. Therefore, many features related to similar labels are selected, which leads to poor classification performance. To this end, Max-Correlation term considering high-order label correlations is proposed. Additionally, we combine the Max-Correlation term with feature redundancy term to ensure that selected features are relevant to different label groups. Finally, a new method named Multi-label Feature Selection considering Max-Correlation (MCMFS) is proposed. Experimental results demonstrate the classification superiority of MCMFS in comparison to eight state-of-the-art multi-label feature selection methods.Using a newly introduced connection between the local and non-local description of open quantum system dynamics, we investigate the relationship between these two characterisations in the case of quantum semi-Markov processes. This class of quantum evolutions, which is a direct generalisation of the corresponding classical concept, guarantees mathematically well-defined master equations, while accounting for a wide range of phenomena, possibly in the non-Markovian regime. In particular, we analyse the emergence of a dephasing term when moving from one type of master equation to the other, by means of several examples. We also investigate the corresponding Redfield-like approximated dynamics, which are obtained after a coarse graining in time. Relying on general properties of the associated classical random process, we conclude that such an approximation always leads to a Markovian evolution for the considered class of dynamics.The cosmological singularity of infinite density, temperature, and spacetime curvature is the classical limit of Friedmann's general relativity solutions extrapolated to the origin of the standard model of cosmology. Jacob Bekenstein suggests that thermodynamics excludes the possibility of such a singularity in a 1989 paper. HG-9-91-01 We propose a re-examination of his particle horizon approach in the early radiation-dominated universe and verify it as a feasible alternative to the classical inevitability of the singularity. We argue that this minimum-radius particle horizon determined from Bekenstein's entropy bound, necessarily quantum in nature as a quantum particle horizon (QPH), precludes the singularity, just as quantum mechanics provided the solution for singularities in atomic transitions as radius r → 0 . An initial radius of zero can never be attained quantum mechanically. This avoids the spacetime singularity, supporting Bekenstein's assertion that Friedmann models cannot be extrapolated to the very beginning of the universe but only to a boundary that is 'something like a particle horizon'. The universe may have begun in a bright flash and quantum flux of radiation and particles at a minimum, irreducible quantum particle horizon rather than at the classical mathematical limit and unrealizable state of an infinite singularity.Multiple kernel learning is a paradigm which employs a properly constructed chain of kernel functions able to simultaneously analyse different data or different representations of the same data. In this paper, we propose an hybrid classification system based on a linear combination of multiple kernels defined over multiple dissimilarity spaces. The core of the training procedure is the joint optimisation of kernel weights and representatives selection in the dissimilarity spaces. This equips the system with a two-fold knowledge discovery phase by analysing the weights, it is possible to check which representations are more suitable for solving the classification problem, whereas the pivotal patterns selected as representatives can give further insights on the modelled system, possibly with the help of field-experts. The proposed classification system is tested on real proteomic data in order to predict proteins' functional role starting from their folded structure specifically, a set of eight representations are drawn from the graph-based protein folded description. The proposed multiple kernel-based system has also been benchmarked against a clustering-based classification system also able to exploit multiple dissimilarities simultaneously. Computational results show remarkable classification capabilities and the knowledge discovery analysis is in line with current biological knowledge, suggesting the reliability of the proposed system.An alternative to the Carnot-Clausius approach for introducing entropy and the second law of thermodynamics is outlined that establishes entropy as a nonequilibrium property from the onset. Five simple observations lead to entropy for nonequilibrium and equilibrium states, and its balance. Thermodynamic temperature is identified, its positivity follows from the stability of the rest state. It is shown that the equations of engineering thermodynamics are valid for the case of local thermodynamic equilibrium, with inhomogeneous states. The main findings are accompanied by examples and additional discussion to firmly imbed classical and engineering thermodynamics into nonequilibrium thermodynamics.Millions of Android applications (apps) are widely used today. Meanwhile, the number of malicious apps has increased exponentially. Currently, there are many security detection technologies for Android apps, such as static detection and dynamic detection. However, the uncertainty of the features in detection is not considered sufficiently in these technologies. Permissions play an important role in the security detection of Android apps. In this paper, a malicious application detection model based on features uncertainty (MADFU) is proposed. MADFU uses logistic regression function to describe the input (permissions) and output (labels) relationship. Moreover, it uses the Markov chain Monte Carlo (MCMC) algorithm to solve features' uncertainty. After experimenting with 2037 samples, for malware detection, MADFU achieves an accuracy of up to 95.5%, and the false positive rate (FPR) is 1.2%. MADFU's Android app detection accuracy is higher than the accuracy of directly using 24 dangerous permission. The results also indicate that the method for an unknown/new sample's detection accuracy is 92.
Read More: https://www.selleckchem.com/products/hg-9-91-01.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team