Notes
![]() ![]() Notes - notes.io |
The aim of the present study was to encapsulate lipophosphoglycan molecule (LPG) which is one of the most immunogenic antigens of Leishmania parasites into PLGA nanoparticles with autoclaved or soluble leishmanial antigens, characterize synthetized nanoparticles with different methods and evaluate their in vitro/in vivo immunostimulatory activities to develop new vaccine candidates. PLGA nanoparticles including LPG and autoclaved leishmania antigen (ALA) or soluble leishmania antigen (ALA) were synthetized by double emulsion solvent evaporation method. The synthetized nanoparticles were characterized by SEM and Zeta-sizer instruments for determination of size, zeta potentials and polydispersity index (PDI) values. The antigen release profiles and encapsulation efficiencies were determined by UV-Vis spectroscopy. Griess reaction and ELISA tests were used for measurements of produced nitric oxide (NO) and cytokine levels of macrophages and splenocytes treated with nanoparticles. For determination of protective imulatory activities and they are promising nanovaccine formulations for the prevention of leishmaniasis in near future.Vascularization of engineered tissue is one of the hallmark challenges of tissue engineering. Leveraging self-assembled nucleic acid-collagen complexes (NACCs), we mixed a VEGF-R2 targeting aptamer or its receptor agonist divalent assembly with type I collagen to assemble NACC microfibers. Human umbilical vein endothelial cells (HUVECs) quickly remodeled these fibers into tubulogenic-like structures over 48 h. Moreover, NACCs made with the receptor agonist divalent aptamer assembly promoted enhanced expression of von Willebrand factor (vWF), angiopoietin-2 (ANGPT-2), and matrix metalloproteinase-2 (MMP-2) by HUVECs as measured by either immunocytochemistry or ELISA. The findings suggest, endothelial cell phenotype was directed by both biochemical cues afforded by the agonist behavior of the divalent aptamer assembly as well as by the biophysical cues afforded by the fibrous topography. Collectively, these results support the development of an angiogenic endothelial cell phenotype stimulated by the VEGF-R2 agonist NACC fibers. Thus, the combination of engineered DNA aptamer nanotechnology and DNA-collagen complexation phenomena is a promising biofunctional natural scaffold material system for tissue engineering and regenerative medicine applications.Ethylcellulose is a biocompatible polymer attracting increasing interest for biomedical applications. In the present work, the formation of folate-ethylcellulose nanoparticle complexes from nano-emulsion templates prepared by a low-energy approach, using aqueous components suitable for biomedical applications has been investigated. The composition of the aqueous component is shown to be crucial for the formation of stable nano-emulsions and influences the zeta potential values. The ethylcellulose nanoparticles with mean sizes around 100 nm were obtained from the nano-emulsions by solvent evaporation and showed positive zeta potential values above +20 mV due to the presence of the cationic surfactant. The nanoparticles were successfully complexed with folate, as evidenced by both particle size and zeta potential measurements. The complexes prepared with HEPES buffered glucose solution showed excellent haemocompatibility, which make them promising for parenteral therapeutic applications and also for those in which easy access to systemic circulation may occur, like in lungs.Dermatological applications of phloretin are restricted by its poor aqueous solubility. Nanotechnology has been proposed as strategy to increase the apparent drug solubility in aqueous media. This study aimed to develop, characterize, and evaluate the antitumoral effects and safety of polymeric nanocapsules containing phloretin (NCPhl). Further, to incorporate NC-Phl in an innovative semi-solid formulation (HG-NCPhl) to evaluate its performance using porcine skin model. NC-Phl was prepared and the effects in MRC5, HACAT, and SK-mel28 cells were evaluated. Hydrogels were prepared with Lecigel ® and characterized for their nanotechnological properties, adhesion (in vitro washability), and penetration/permeation studies in porcine skin. NC-Phl had a cytotoxic effect against Sk-Mel-28 cells and the population doubling time was increased upon treatment with NC-Phl for longer culture periods; notably when cells were treated for 72 h and then followed for 7 days after the treatment was removed (p less then 0.05). HG-NC-Phl was considered adhesive and had a higher capacity to penetrate all skin layers compared with HG-Phl (p less then 0.05). The innovative hydrogel HGNC-Phl promoted a drug-reservoir in the stratum corneum and higher penetration of the flavonoid into the epidermis. Therefore, this approach can be considered as a platform to establish versatile dermatological solutions for both cosmeceutics and melanoma therapy.Replenishing neurons in patients with neurodegenerative diseases is one of the ultimate therapies for these progressive, debilitating and fatal diseases. Electrical stimulation can improve neuron stem cell differentiation but requires a reliable nanopatterned electroconductive substrate. Potential candidate substrates are polycaprolactone (PCL) - polyanilinecamphorsulfonic acid (PANICSA) nanofibers, but their nanobiophysical properties need to be finetuned. The present study investigates the use of the pseudo-doping effect on the optimization of the electroconductivity of these polyaniline-based electrospun nanofibers. This was performed by developing a new solvent system that comprises a mixture of hexafluoropropanol (HFP) and trifluoroethanol (TFE). For the first time, an electroconductivity so high as 0.2 S cm-1 was obtained for, obtained from a TFEHFP 50/50 vol% solution, while maintaining fiber biocompatibility. The physicochemical mechanisms behind these changes were studied. The results suggest HFP promotes changes on PANI chains conformations through pseudo-doping, leading to the observed enhancement in electroconductivity. The consequences of such change in the nanofabrication of PCL-PANI fibers include an increase in fiber diameter (373 ± 172 nm), a decrease in contact angle (42 ± 3°) and a decrease in Young modulus (1.6 ± 0.5 MPa), making these fibers interesting candidates for neural tissue engineering. Electrical stimulation of differentiating neural stem cells was performed using AC electrical current. Positive effects on cell alignment and gene expression (DCX, MAP2) are observed. find more The novel optimized platform shows promising applications for (1) building in vitro platforms for drug screening, (2) interfaces for deep-brain electrodes; and (3) fully grown and functional neurons transplantation.
Homepage: https://www.selleckchem.com/products/ms-275.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team