Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Exenatide is a small therapeutic peptide being currently used in clinic for the treatment of diabetes mellitus type II, however, displaying a short blood circulation time which makes two daily injections necessary. Covalent polymer modification of a protein is a well-known approach to overcome this limitation, resulting in steric shielding, an increased size and therefore a longer circulation half-life. In this study, we employed site-selective C-terminal polymer ligation of exenatide via copper-catalyzed azide-alkyne-cycloaddition (CuAAC) to yield 11-conjugates of either poly(ethylene glycol) (PEG) or linear polyglycerol (LPG) of different molecular weights. Our goal was to compare the impact of the two polymers on size, structure and activity of exenatide on the in vitro and in vivo level. Both polymers did not alter the secondary structure of exenatide and expectedly increased its hydrodynamic size, where the LPG-versions of exenatide showed slightly smaller values than their PEG-analogs of same molecular weight. Upon conjugation, GLP-1 receptor activation was diminished, however, still enabled maximum receptor response at slightly higher concentrations. Exenatide modified with a 40 kDa LPG (Ex-40-LPG) showed significant reduction of the blood glucose level in diabetic mice for up to 72 h, which was comparable to its PEG-analog, but 9-fold longer than native exenatide (8 h).Developing the cell-impermeable Ru(II) polypyridyl cationic complexes as effective photosensitizers (PS) which have high cellular uptake and photo-toxicity, but low dark toxicity, is quite challenging. Here we found that the highly reactive singlet oxygen (1O2) can be generated by the irradiation of a typical Ru(II) polypyridyl complex Ru(II)tris(tetramethylphenanthroline) ([Ru(TMP)3]2+) under visible light irradiation by ESR with TEMPO (2,2,6,6-tetramethyl-4-piperidone-N-oxyl) as 1O2 probe. Effective cellular and nuclear delivery of cationic [Ru(TMP)3]2+ was achieved through our recently developed ion-pairing method, and 2,3,4,5-tetrachlorophenol (2,3,4,5-TeCP) was found to be the most effective among all chlorophenols tested. The accelerated cellular, especially nuclear uptake of [Ru(TMP)3]2+ results in the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and DNA strand breaks, caspase 3/7 activation and cell apoptosis in HeLa cells upon light irradiation. More importantly, compared with other traditional photosensitizers, [Ru(TMP)3]2+ showed significant photo-toxicity but low dark toxicity. Similar effects were observed when 2,3,4,5-TeCP was substituted by the currently clinically used anti-inflammatory drug flufenamic acid. This represents the first report that the cell-impermeable Ru(II) polypyridyl complex ion-paired with suitable lipophilic counter-anions functions as potent intracellular photosensitizer under visible light irradiation mainly via a 1O2-mediated mechanism. These findings should provide new perspectives for future investigations on other metal complexes with similar characteristics as promising photosensitizers for potential photodynamic therapy.In this study, mesoporous silica nanocarriers were synthesized from natural sources such as rice and wheat husk for drug delivery application. First, the biogenic silica in cereals husk was extracted by acid leaching and then converted to sodium silicate as a silica precursor. Mesoporous silica nanoparticles were then synthesized by adding sodium silicate to the template mixture by continuous and discrete modes during the sol-gel process. The effects of natural sources type and precursor addition method on nanocarriers' morphological and physicochemical properties were investigated by XRD, FT-IR, BET and SEM analysis. Our results showed rice husk-based spherical nanocarriers were more crystalline with slit-shaped pores, while wheat husk-based nanocarriers had been composed of spherical nanoparticles with narrow cylindrical pores. The results also showed that by adding the precursor discretely, their hydrophilicity, particle size and pore size increased compared with the continuous mode, probably due to the hithe MCF-7 cell line.
The morbidity and mortality of patients requiring mechanical ventilation for coronavirus disease 2019 (COVID-19) pneumonia is considerable. We studied the use of whole-lung low dose radiation therapy (LDRT) in this patient cohort.
Patients admitted to the intensive care unit (ICU) and requiring mechanical ventilation for COVID-19 pneumonia were included in this randomized double-blind study. Patients were randomized to 1 Gy whole-lung LDRT or sham irradiation (sham-RT). Treatment group allocation was concealed from patients and ICU clinicians, who treated patients according to the current standard of care. Patients were followed for the primary endpoint of ventilator-free days (VFDs) at day 15 post-intervention. Secondary endpoints included overall survival, as well as changes in oxygenation and inflammatory markers.
Twenty-two patients were randomized to either whole-lung LDRT or sham-RT between November and December 2020. Patients were generally elderly and comorbid, with a median age of 75 years in both arms. No difference in 15-day VFDs was observed between groups (p = 1.00), with a median of 0 days (range, 0-9) in the LDRT arm, and 0 days (range, 0-13) in the sham-RT arm. Overall survival at 28 days was identical at 63.6% (95%CI, 40.7-99.5%) in both arms (p = 0.69). Apart from a more pronounced reduction in lymphocyte counts following LDRT (p < 0.01), analyses of secondary endpoints revealed no significant differences between the groups.
Whole-lung LDRT failed to improve clinical outcomes in critically ill patients requiring mechanical ventilation for COVID-19 pneumonia.
Whole-lung LDRT failed to improve clinical outcomes in critically ill patients requiring mechanical ventilation for COVID-19 pneumonia.We have reported that pseudoginsenoside-F11 (PF11) can significantly improve the cognitive impairments in several Alzheimer's disease (AD) models, but the mechanism has not been fully elucidated. In the present study, the effects of PF11 on AD, in particular the underlying mechanisms related with protein phosphatase 2A (PP2A), were investigated in a rat model induced by okadaic acid (OA), a selective inhibitor of PP2A. The results showed that PF11 treatment dose-dependently improved the learning and memory impairments in OA-induced AD rats. PF11 could significantly inhibit OA-induced tau hyperphosphorylation, suppress the activation of glial cells, alleviate neuroinflammation, thus rescue the neuronal and synaptic damage. LXH254 nmr Further investigation revealed that PF11 could regulate the protein expression of methyl modifying enzymes (leucine carboxyl methyltransferase-1 and protein phosphatase methylesterase-1) in the brain, thus increase methyl-PP2A protein expression and indirectly increase the activity of PP2A. Molecular docking analysis, structural alignment and in vitro results showed that PF11 was similar in the shape and electrostatic field feature to a known activator of PP2A, and could directly bind and activate PP2A.
Here's my website: https://www.selleckchem.com/products/lxh254.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team