Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Moreover, we propose a multimodality heterogeneous face interpretable disentangled representation (M-HFIDR) to extend the basic approach suitable for the multimodality face recognition and synthesis. To evaluate the ability of generalization, we construct a novel large-scale face sketch data set. Experimental results on multiple heterogeneous face databases demonstrate the effectiveness of the proposed method.In this article, distributed algorithms are proposed for training a group of neural networks with private data sets. Stochastic gradients are utilized in order to eliminate the requirement for true gradients. To obtain a universal model of the distributed neural networks trained using local data sets only, consensus tools are introduced to derive the model toward the optimum. Most of the existing works employ diminishing learning rates, which are often slow and impracticable for online learning, while constant learning rates are studied in some recent works, but the principle for choosing the rates is not well established. Trichostatin A In this article, constant learning rates are adopted to empower the proposed algorithms with tracking ability. Under mild conditions, the convergence of the proposed algorithms is established by exploring the error dynamics of the connected agents, which provides an upper bound for selecting the constant learning rates. Performances of the proposed algorithms are analyzed with and without gradient noises, in the sense of mean square error (MSE). It is proved that the MSE converges with bounded errors determined by the gradient noises, and the MSE converges to zero if the gradient noises are absent. Simulation results are provided to validate the effectiveness of the proposed algorithms.In this article, we consider the distributed fault-tolerant resilient consensus problem for heterogeneous multiagent systems (MASs) under both physical failures and network denial-of-service (DoS) attacks. Different from the existing consensus results, the dynamic model of the leader is unknown for all followers in this article. To learn this unknown dynamic model under the influence of DoS attacks, a distributed resilient learning algorithm is proposed by using the idea of data-driven. Based on the learned dynamic model of the leader, a distributed resilient estimator is designed for each agent to estimate the states of the leader. Then, a new adaptive fault-tolerant resilient controller is designed to resist the effect of physical failures and network DoS attacks. Moreover, it is shown that the consensus can be achieved with the proposed learning-based fault-tolerant resilient control method. Finally, a simulation example is provided to show the effectiveness of the proposed method.This article develops an adaptive observation-based efficient reinforcement learning (RL) approach for systems with uncertain drift dynamics. A novel concurrent learning adaptive extended observer (CL-AEO) is first designed to jointly estimate the system state and parameter. This observer has a two-time-scale structure and does not require any additional numerical techniques to calculate the state derivative information. The idea of concurrent learning (CL) is leveraged to use the recorded data, which leads to a relaxed verifiable excitation condition for the convergence of parameter estimation. Based on the estimated state and parameter provided by the CL-AEO, a simulation of experience-based RL scheme is developed to online approximate the optimal control policy. Rigorous theoretical analysis is given to show that the practical convergence of the system state to the origin and the developed policy to the ideal optimal policy can be achieved without the persistence of excitation (PE) condition. Finally, the effectiveness and superiority of the developed methodology are demonstrated via comparative simulations.Weakly supervised object detection (WSOD) is a challenging task that requires simultaneously learning object detectors and estimating object locations under the supervision of image category labels. Many WSOD methods that adopt multiple instance learning (MIL) have nonconvex objective functions and, therefore, are prone to get stuck in local minima (falsely localize object parts) while missing full object extent during training. In this article, we introduce classical continuation optimization into MIL, thereby creating continuation MIL (C-MIL) with the aim to alleviate the nonconvexity problem in a systematic way. To fulfill this purpose, we partition instances into class-related and spatially related subsets and approximate MIL's objective function with a series of smoothed objective functions defined within the subsets. We further propose a parametric strategy to implement continuation smooth functions, which enables C-MIL to be applied to instance selection tasks in a uniform manner. Optimizing smoothed loss functions prevents the training procedure from falling prematurely into local minima and facilities learning full object extent. Extensive experiments demonstrate the superiority of CMIL over conventional MIL methods. As a general instance selection method, C-MIL is also applied to supervised object detection to optimize anchors/features, improving the detection performance with a significant margin.Existing RGBT tracking methods usually localize a target object with a bounding box, in which the trackers are often affected by the inclusion of background clutter. To address this issue, this article presents a novel algorithm, called noise-robust cross-modal ranking, to suppress background effects in target bounding boxes for RGBT tracking. In particular, we handle the noise interference in cross-modal fusion and seed labels from the following two aspects. First, the soft cross-modality consistency is proposed to allow the sparse inconsistency in fusing different modalities, aiming to take both collaboration and heterogeneity of different modalities into account for more effective fusion. Second, the optimal seed learning is designed to handle label noises of ranking seeds caused by some problems, such as irregular object shape and occlusion. In addition, to deploy the complementarity and maintain the structural information of different features within each modality, we perform an individual ranking for each feature and employ a cross-feature consistency to pursue their collaboration.
Read More: https://www.selleckchem.com/products/Trichostatin-A.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team