Notes
![]() ![]() Notes - notes.io |
Atrazine (ATR), a bio accumulative herbicide is frequently used in agriculture to control unwanted weeds. Due to continuous application, atrazine persists in the environment and causes deleterious impacts including neurotoxicity, hepatotoxicity, and gut microbiota disorders. Therefore, this study for the first time reports the variation in the gut microbiota, induction of process of apoptosis and autophagy in mice induced by ATR. Results indicated that TUNEL-positive hepatocytes suggestive of apoptosis were increased in livers of different experimental mice. Results on metabolic analysis in liver tissues indicated an overall change in seventy-six metabolites particularly Uridine 5'-diphosphate, Propenoylcarnitine and Chinenoside V resulting in generation of energy-related metabolic disorders and imbalance of oxidation/autoxidation status. Results on gut microbiome inquisition showed that ATR changed the richness and diversity of gut microbiota of mice and number of Firmicutes. Moreover, results also revealed that ATR induced apoptosis via disruption of apoptotic (Bax, Bcl2, and Casp3) and autophagy (LC3/Map1lc3a, Beclin 1/Becn1 and P62/Sqstm1) genes. Results of our experimental study confirmed that changes in gut microbiota play a significant role in process of gut immune regulation and inflammation via different metabolites. In conclusion, the findings of our study provide a new idea for the involvement of mechanisms of detoxification in liver and inquisition of gut microbiota plays crucial role in regulation of physiological activities through liver-gut axis to mitigate toxic effects in animals.Di(2-ethylhexyl) phthalate (DEHP) is a priority environmental pollutant with carcinogenic, teratogenic, and mutagenic toxicity. selleck chemicals Because it is widely used and ubiquitous in water, it is urgent to use a non-toxic, fast, and non-temperature dependent photocatalyst for degradation. Herein, a Z-scheme heterojunction composite catalyst consisting of Bi2O3 and TiO2 with reduced graphene oxide (rGO) as a two-dimensional template was designed and characterized. Under simulated solar radiation, the catalyst doped with 4% rGO presented the best photocatalytic DEHP (10 mg L-1) degradation at pH = 6, reaching 89% conversion in 90 min, and the degradation rate was 2.05 times higher than unmodified materials. The successful preparation of the Z-scheme junction enhanced the utilization of visible light region, thereby improving the DEHP's photocatalytic degradation performance. Subsequently, density functional theory (DFT) combined with GC-MS metabolite detection to propose a complete DEHP photocatalytic degradation mechanism. ·O2- and ·OH were detected as the primary reactive oxygen radicals involved in DEHP degradation, which easily attacked the O11 site with a high Fukui index (f0) through de-esterification, β-oxidation, and hydroxylation. While satisfying the rapid degradation, the highly repeatable catalyst cleaved the aromatic ring so that DEHP achieved mineralization during the degradation process. Therefore, its ability to completely degrade was very promising for environmental remediation, especially in water treatment. Besides, there were only a few studies on the degradation mechanism and reaction pathway of DEHP under visible light, which provided a theoretical basis for the aromatic compounds' photocatalysis research.A series of biodegradable copolyester of poly (butylene succinate-co-butylene malate) (P (BS-co-BM)) bearing hydroxyl groups were prepared by one-pot synthetic strategy without hydroxy-protection. The structure and properties of the P (BS-co-BM) were characterized by nuclear magnetic resonance (1H NMR), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), polarized optical microscope (POM), contact angle tester and enzymatic degradation. The results showed that the P (BS-co-BM) manifested excellent thermal properties. The glass transition temperature (Tg) of the P (BS-co-BM) increased with malic acid units added, the crystallizability temperature (Tc) decreased from 72.6 °C to 21.7 °C, and the melting point temperature (Tm) decreased from 117.9 °C to 82.4 °C. The crystallization rate of poly(butylene succinate) (PBS) segment within P (BS-co-BM) was improved by the introduction of malic acid. The enzymatic degradation rate increased with hydrophilicity of the copolyester improving.Heavy metal ions and pesticides are the noteworthy toxic substances which must be removed from contaminated water for safeguarding public health. The higher levels of these substances in natural water may adversely affect the human health, climate and the eco-framework. The adsorptive removal of hazardous constituents employing metal organic frameworks has drawn considerable attention of researchers during the last decade. From this point of view, single crystal of calcium fumarate [Ca(C4H4O4)1.5 (H2O)(CH3OH)2] has been developed and analyzed by single crystal X-ray crystallography which confirmed the formation of 3-D metal organic frameworks (MOFs). The synthesized MOFs was employed for simultaneous adsorptive removal of imidacloprid, a high consumption pesticide, and highly toxic Cd (II) from aqua ecosystem. The effect of variation in experimental conditions such as solution pH, adsorbent dosage, contact time, initial concentration and temperature on adsorption was systematically evaluated. Both the imidacloprid and Cd(II) exhibited maximum adsorption at pH 6.5 and 7.8, respectively. The equilibrium empirical data was fitted into Langmuir, Freundlich and Temkin isotherms. The adsorption capacity of CaFu MOFs was observed to be 467.23 and 781.2 mg g-1 for imidacloprid and cadmium ions, respectively. The adsorbed pollutants were desorbed from the adsorbent using dilute HCl, and the material was reused for five adsorption-desorption cycles without any appreciable loss of adsorption capacity. Therefore, the 3-D CaFu MOFs could be utilized as a novel material for adsorptive removal of imidacloprid pesticide as well as Cd (II) from wastewater.The performance of a photocatalytic device for VOC abatement was studied at typical environmental concentrations (C0 at ppb and sub-ppb levels) using urban air in a Continuous-flow Stirred-Tank Reactor (CSTR). The photocatalytic performance was evaluated for 42 VOCs at ppb and sub-ppb concentrations and the photocatalytic kinetic constant for abatement k was measured for each specific compound. An overall value of k was also obtained for the sum of all quantified VOCs. The kinetic constant k allows to predict the time needed to abate the substrate down to the desired residual concentration and to define the correct sanitization protocol. The kinetic constant k depends on the effective concentration in accordance with the basic kinetic model already reported for the photocatalytic process. This model foresees the transformation rate of a substrate as a function of a bundle of microscopic kinetic constants, the concentration of the substrate at the surface and the adsorbed photon flux. From this model it was possible i) to correlate the k value with microscopic catalytic parameters and the VOC concentration; ii) to obtain useful suggestions for the standardization of test methods on gaseous pollutants.
Read More: https://www.selleckchem.com/products/WP1130.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team