Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Biomass is a potential non-food, carbon-neutral, and abundant resource, which can be used as an alternative to fossil fuels during the sustainable preparation of various platform chemicals. Alkyl levulinates (ALs) have found widespread application as flavorings, plasticizing agents, and fuel additives, as well as synthetic precursors to various building blocks. Several processes have been investigated to transform biomass and its derivatives into ALs, which mainly include (i) direct esterification of levulinic acid (LA) with alkyl alcohols and (ii) alcoholysis reactions of renewable biomass feedstocks and their derivatives, including furfuryl alcohol (FAL), chloromethyl furfural (CMF), and saccharides. This review focuses on illustrating the effects of the biomass pretreatment step, catalyst texture, possible mechanisms, acidities, and intermediates on the synthesis of ALs from sustainable resources covering a wide range of intermediates, including diethyl ether (DEE), 4,5,5-triethoxypentan-2-one (TEP), ethoxymethylfuran (EMF), ethyl-D-fructofuranoside (EDFF), and ethyl-D-glucopyranoside (EDGP).Quinoxaline derivatives demonstrate many distinguished chemical, biological, and physical properties and have a wide application in dyes, electroluminescent material, organic semiconductors, biological agents, etc. However, the synthesis of quinoxaline still suffers from several drawbacks, for instance, longer reaction time, unsatisfactory yields, and use of metal catalysts. Here, utilizing microdroplet-assisted reaction, we demonstrate the successive synthesis of several important quinoxaline derivatives. For case studies of 1H-indeno [1, 2-b] quinoxaline and 3,5-dimethyl-2-phenylquinoxaline, the present microdroplet approach can complete in milliseconds and the conversion rate reached 90% without adding any catalyst, which is considerably quicker and higher than conversional bulk-phase reactions. When combined with MS detection, high-throughput screening of the optimal reaction conditions can be achieved. Several impacts of droplet volume, reaction flow rate, distance from the MS inlet, spray voltage, and flow rate of the auxiliary gas can be screened on-site quickly for enhanced reaction speed and yields. More importantly, this platform is capable to be used for the scaled-up microdroplet synthesis of quinoxaline diversities. Considering the facile, economic, and environmentally friendly features of the microdroplet approach, we sincerely hope that the current strategy can effectively promote the academic research and industrial fabrications of functional quinoxaline substances for chemical, biological, and pharmaceutical application developments.Microalgae are attractive feedstocks for biofuel production and are especially suitable for thermochemical conversion due to the presence of thermally labile constituents-lipids, starch and protein. However, the thermal degradation of starch and proteins produces water as well as other O- and N-compounds that are mixed-in with energy-dense lipid pyrolysis products. To produce hydrocarbon-rich products from microalgae biomass, we assessed in situ and ex situ catalytic pyrolysis of a lipid-rich Chlorella sp. in the presence of the HZSM-5 zeolite catalyst over a temperature range of 450-550°C. Results show that product yields and compositions were similar under both in situ and ex situ conditions with benzene, toluene and xylene produced as the primary aromatic products. Yields of aromatics increased with increasing temperature and the highest aromatic yield (36.4% g aromatics/g ash-free microalgae) and selectivity (87% g aromatics/g bio-oil) was obtained at 550°C. Also, at this temperature, oxygenates and nitrogenous compounds were not detected among the liquid products during ex situ catalytic pyrolysis. We also assessed the feasibility of a two-step fractional pyrolysis approach integrated with vapor phase catalytic upgrading. In these experiments, the biomass was first pyrolyzed at 320°C to degrade and volatilize starch, protein and free fatty acids. Then, the residual biomass was pyrolyzed again at 450°C to recover products from triglyceride decomposition. The volatiles from each fraction were passed through an ex situ catalyst bed. Results showed that net product yields from the 2-step process were similar to the single step ex situ catalytic pyrolysis at 450°C indicating that tailored vapor phase upgrading can be applied to allow separate recovery of products from the chemically distinct biomass components-(1) lower calorific value starch and proteins and (2) energy-dense lipids.Lithium-boron (Li-B) alloys play an important role in the fields of thermal batteries and Li metal batteries, where the electrochemical performance is highly dependent on microstructure homogeneity and the Li content. In this study, computed tomography (CT) scanning has been firstly used to study the elemental content and spatial distribution of Li in a Li-B alloy. For a commercial Li-B alloy, quantitative relationships between the CT values, [Hu], and the weight percent of Li, wT-Li, and the density, ρLi-B, that is, [Hu] = 13563 . 8 36 . 2 × w T - Li - 2 . click here 8 - 1 , 016 . 2 and [Hu] = 790.1 × ρLi-B - 1, 016.2, respectively. The experimental data were found to be in good agreement with current theory. The CT scanning method was non-destructive, and proved to be fast, highly accurate, and low-cost for the characterization of Li-B alloy ingots in terms of elemental composition, density, and uniformity.Zinc oxide (ZnO) nanoparticles have attracted significant interest in a number of applications ranging from electronics to biomedical sciences due to their large exaction binding energy (60 meV) and wide bandgap of 3.37 eV. In the present study, we report the low-cost bacterium based "eco-friendly" efficient synthesis of ZnO nanoparticles by using the zinc-tolerant bacteria Serratia nematodiphila. The physicochemical characterization of ZnO nanoparticles was performed by employing UV-vis spectroscopy, XRD, TEM, DLS, Zeta potential, and Raman spectroscopy. The antimicrobial and antifungal studies were investigated at different concentrations using the agar well-diffusion method, whereby the microbial growth rate decreases with the increase in nanoparticle concentration. Further, photocatalytic performance studies were conducted by taking methyl orange (MO) as a reference dye.
Website: https://www.selleckchem.com/products/phtpp.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team