Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The machine resulted in best performance at fruit rotational speed of 220 rpm (kinnow) and 260 rpm (sweet orange) with higher peeling efficiency and minimum juice loss. The capacity for peeling and juicing operation was 60-90 kg/h (kinnow) and 50-60 kg/h (sweet orange), respectively. This composite peeling cum juice extractor machine can find its applicability in cottage citrus fruit juice processing industries as well as for the domestic juice sellers.The comparative phytochemicals, antioxidative and antidiabetic activities of Camellia sinensis (black tea) and Aspalathus linearis (rooibos tea) were studied in vitro and ex vivo. Concentrated infusions of the teas showed significant free radical scavenging activities in vitro. They significantly increased the glutathione level, superoxide dismutase and catalase enzyme activities in oxidative hepatic injury, while concomitantly depleting malondialdehyde level. The teas significantly inhibited intestinal glucose absorption and α-amylase activities, and elevated muscle glucose uptake. LCMS phytochemical profiling revealed the presence of hydroxycaffeic acid, l-threonate, caffeine, vanillic acid, n-acetylvaline, and spinacetin 3-glucoside in C. sinensis. While quinolinic acid, coumestrol, phloroglucinol, 8-hydroxyquercetagetin, umbelliferone, and ajoene were identified in A. linearis. These results portray the antioxidant and antidiabetic potencies of both teas, with A. linearis showed better activity compared to C. sinensis. These teas may thus be used as functional foods in the management of diabetes and other oxidative stress related metabolic disorders.Fresh areca nut is widely favored by consumers in South and Southeast Asia. However, postharvest areca nut perished quickly and was vulnerable to chilling injury (CI) and lignification during traditional cold storage. In order to alleviate this situation, hot water treatment was applied to investigate its effect on CI and lignification of fresh areca nut during cold storage at 13 °C. Areca nuts were submersed in hot water at 45 °C (HW45) and 50 °C (HW50) for short-term 5 min compared to fruit submersed in water at 20 °C (CT), then stored at 13 °C with 90% humidity for 60 days. CI, malondialdehyde (MDA), electrolyte leakage (EL), lignin and total phenolic content, related enzymes including phenylalanine ammonia-lyase (PAL), cinnamyl alcohol dehydrogenase (CAD) and peroxidase activity (POD) were examined. find more Results indicated that two HW treatments both induced chilling tolerance and delayed lignification of areca nut to varying degrees during cold storage compared with the CT. Among which, HW45 treated-areca nuts had the lowest CI, MDA content and EL while maintaining the highest total phenolic content. Moreover, no significant effects were found between HW45 and HW50 on tissue lignification, but they both effectively blocked lignin accumulation by inhibiting PAL, CAD and POD activities compared with the CT. The present study provided a safe physical method to mitigate CI and delay tissue lignification in cold-stored areca nut.Pithecellobium dulce (Roxb) Benth (P. dulce), known as "guamúchil", is a tree native to the American continent. Various parts of the tree are used in traditional medicine, primarily for treating gastrointestinal disorders. The phenolic compounds and antioxidant capacity of this plant are largely responsible for the beneficial health effects attributed to it. A number of authors have studied the antioxidant capacity and phenolic compounds of the aril, seed, leaf and root of P. dulce using various methodologies, which can differ considerably in variables such as environmental factors, type of drying, temperature, the way the sample is stored, and the use of different solvents in the various extraction methods. Even methods of quantification by HPLC vary tremendously. This paper summarizes the existing research carried out to date on determining the phenolic profile and antioxidant capacity of P. dulce.Phenolic compounds are a group of secondary metabolites produced by plants under stressful conditions. Phenolic compounds play an important role in the prevention and treatment of certain illnesses and are exploited by the food and pharmaceutical industries. Conventional methods are commonly used as models to compare the efficiencies of alternative extraction methods. Among alternative extraction processes, microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), supercritical fluid extraction (SFE) and ultrasonic-assisted extraction (UAE) are the most studied. These methods produce extracts rich in phenolic compounds using moderate temperatures, short extraction times, and solvents generally recognized as safe. The combination of extraction time and temperature plays a critical role in the stability of the compounds. Solvents of higher polarity enhance the extraction of phenolic compounds. The use of the ethanol-water mixture for MAE, PLE, and UAE is recommended. MAE and UAE involve shorter extraction times than do PLE and SFE. SFE requires a low average temperature (40 °C). MAE produces the highest total phenolic content [227.63 mg GAE/g dry basis (d.b.)], followed by PLE (173.65 mg GAE/g d.b.), UAE (92.99 mg GAE/g d.b.) and SFE (37 mg GAE/g d.b.). Extraction yields and recovery rates of the phenolic compounds can be enhanced by combining and integrating extraction methods.Spin off events and impacts can eject boulders from an asteroid surface and rubble pile asteroids can accumulate from debris following a collision between large asteroids. These processes produce a population of gravitational bound objects in orbit that can impact an asteroid surface at low velocity and with a distribution of impact angles. We present laboratory experiments of low velocity spherical projectiles into a fine granular medium, sand. We delineate velocity and impact angles giving ricochets, those giving projectiles that roll-out from the impact crater and those that stop within their impact crater. With high speed camera images and fluorescent markers on the projectiles we track spin and projectile trajectories during impact. We find that the projectile only reaches a rolling without slipping condition well after the marble has reached peak penetration depth. The required friction coefficient during the penetration phase of impact is 4-5 times lower than that of the sand suggesting that the sand is fluidized near the projectile surface during penetration.
My Website: https://www.selleckchem.com/products/voxtalisib-xl765-sar245409.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team