Notes
![]() ![]() Notes - notes.io |
NETs induced by TINs were determined to be an oncogenic marker of high-grade gliomas and to be involved in cell proliferation and invasion. NETs overproduction promoted glioma cell proliferation, migration, and invasion. Furthermore, HMGB1 was found to bind to RAGE and activate the NF-κB signaling pathway in vitro. In addition, NETs stimulated the NF-κB signaling pathway, thus promoting IL-8 secretion in glioblastoma. Subsequently, IL-8 recruited neutrophils which in turn mediated NETs formation via the PI3K/AKT/ROS axis in TINs. Conclusions Our results suggest that NETs produced by TINs mediate the crosstalk between glioma progression and the tumor microenvironment by regulating the HMGB1/RAGE/IL-8 axis. Targeting NETs formation or IL-8 secretion may be an effective approach to inhibit glioma progression. Copyright © 2020, Cancer Biology & Medicine.Objective Epithelial cancers often originate from progenitor cells, while the origin of hepatocellular carcinoma (HCC) is still controversial. HCC, one of the deadliest cancers, is closely linked with liver injuries and chronic inflammation, which trigger massive infiltration of bone marrow-derived cells (BMDCs) during liver repair. Methods To address the possible roles of BMDCs in HCC origination, we established a diethylnitrosamine (DEN)-induced HCC model in bone marrow transplanted mice. Immunohistochemistry and frozen tissue immunofluorescence were used to verify DEN-induced HCC in the pathology of the disease. The cellular origin of DEN-induced HCC was further studied by single cell sequencing, single-cell nested PCR, and immunofluorescence-fluorescence in situ hybridization. Results Studies by using single cell sequencing and biochemical analysis revealed that HCC cells in these mice were coming from donor mice BMDCs, and not from recipient mice. Furthermore, the copy numbers of mouse orthologs of several HCC-related genes previously reported in human HCC were also altered in our mouse model. DEN-induced HCCs exhibited a similar histological phenotype and genomic profile as human HCCs. Conclusions These results suggested that BMDCs are an important origin of HCC, which provide important clues to HCC prevention, detection, and treatments. Copyright © 2020, Cancer Biology & Medicine.Objective Cancer stem cell is one of the important causes of tumorigenesis as well as a drug target in the treatment of malignant tumor. However, at present, there is no immune vaccine targeting these cells. Octamer-binding transcription factor 4 (OCT4), a marker of embryonic stem cells and germ cells, often highly expresses in the early stages of tumorigenesis and is therefore a good candidate for cancer vaccine development. Methods To identify the optimal carrier and adjuvant combination, we chemically synthesized and linked three different OCT4 epitope antigens to a carrier protein, keyhole limpet hemocyanin (KLH), combined with Toll-like receptor 9 agonist (TLR9). Results Immunization with OCT4-3 + TLR9 produced the strongest immune response in mice. In prevention assays, significant tumor growth inhibition was achieved in BABL/c mice treated with OCT4-3 + TLR9 (P less then 0.01). Importantly, the results showed that cytotoxic T lymphocyte activity and the inhibition of tumor growth were enhanced in mice immunized with OCT4-3 combined with TLR9. Meanwhile, multiple cytokines [such as interferon (IFN)-γ (P less then 0.05), interleukin (IL)-12 (P less then 0.05), IL-2 (P less then 0.01), and IL-6 (P less then 0.05)] promoting cellular immune responses were shown to be greatly enhanced in mice immunized with OCT4-3 + TLR9. Moreover, we considered safety considerations in terms of the composition of the vaccines to help facilitate the development of effective next-generation vaccines. Conclusions Collectively, these experiments demonstrated that combination therapy with TLR9 agonist induced a tumor-specific adaptive immune response, leading to the suppression of primary tumor growth in testis embryonic carcinoma. Copyright © 2020, Cancer Biology & Medicine.Objective Temozolomide (TMZ) is commonly used for glioblastoma multiforme (GBM) chemotherapy. However, drug resistance limits its therapeutic effect in GBM treatment. RNA-binding proteins (RBPs) have vital roles in posttranscriptional events. While disturbance of RBP-RNA network activity is potentially associated with cancer development, the precise mechanisms are not fully known. The SNRPG gene, encoding small nuclear ribonucleoprotein polypeptide G, was recently found to be related to cancer incidence, but its exact function has yet to be elucidated. Methods SNRPG knockdown was achieved via short hairpin RNAs. Gene expression profiling and Western blot analyses were used to identify potential glioma cell growth signaling pathways affected by SNRPG. Xenograft tumors were examined to determine the carcinogenic effects of SNRPG on glioma tissues. Results The SNRPG-mediated inhibitory effect on glioma cells might be due to the targeted prevention of Myc and p53. In addition, the effects of SNRPG loss on p53 levels and cell cycle progression were found to be Myc-dependent. Furthermore, SNRPG was increased in TMZ-resistant GBM cells, and downregulation of SNRPG potentially sensitized resistant cells to TMZ, suggesting that SNRPG deficiency decreases the chemoresistance of GBM cells to TMZ via the p53 signaling pathway. Our data confirmed that SNRPG suppression sensitizes GBM cells to TMZ by targeting Myc via the p53 signaling cascade. Conclusions These results indicated that SNRPG is a probable molecular target of GBM and suggested that suppressing SNRPG in resistant GBM cells might be a substantially beneficial method for overcoming essential drug resistance. Copyright © 2020, Cancer Biology & Medicine.Objective Anoikis is apoptosis that is induced when cells detach from the extracellular matrix and neighboring cells. As anoikis serves as a regulatory barrier, cancer cells often acquire resistance towards anoikis during tumorigenesis to become metastatic. MicroRNAs (miRNAs) are short strand RNA molecules that regulate genes post-transcriptionally by binding to mRNAs and reducing the expression of its target genes. This study aimed to elucidate the role of a novel miRNA, miR-6744-5p, in regulating anoikis in breast cancer and identify its target gene. Methods An anoikis resistant variant of the luminal A type breast cancer MCF-7 cell line (MCF-7-AR) was generated by selecting and amplifying surviving cells after repeated exposure to growth in suspension. MiRNA microarray analysis identified a list of dysregulated miRNAs from which miR-6744-5p was chosen for overexpression and knockdown studies in MCF-7. find more Additionally, the miRNA was also overexpressed in a triple-negative breast cancer cell line, MDA-MB-231, to evaluate its ability to impair the metastatic potential of breast cancer cells.
Here's my website: https://www.selleckchem.com/products/sis3.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team