Notes
![]() ![]() Notes - notes.io |
The effect of copper (Cu-NPs, CuO-NPs), silver (Ag-NPs) and zinc oxide (ZnO-NPs) nanoparticles (NPs) on plant growth, physiological properties of tomato plants and their symbiotic relationships with the endophytic Fusarium solani FsK strain was investigated. Fungitoxicity tests revealed that the FsK strain was significantly more sensitive to Cu-NPs and ZnO-NPs than CuO-NPs and Ag-NPs both in terms of mycelial growth and spore germination. All NPs were more toxic to FsK compared to their bulk counterparts except for AgNO3, which was 8 to 9-fold more toxic than Ag-NPs. Apart from AgNO3, NPs and bulk counterparts did not affect the number of germinated tomato seeds even in higher concentrations, while root length was significantly reduced in a dose dependent way in most cases. Dry weight of tomato plants was also significantly reduced upon treatment with NPs and counterparts with most pronounced effects in the cases of AgNO3, Cu-NPs, ZnO-NPs, and ZnSO4. Root and shoot length of grown tomato plants was also affected by treatments while differences between NPs and bulk counterparts varied. A marked oxidative stress response was recorded in all cases of NPs/bulk counterparts as indicated by increased MDA and H2O2 levels of treated plants. Treated plants had significantly reduced chlorophyl-a and carotenoid levels compared to the untreated control. NPs and counterparts did not affect FsK colonization of roots indicating a possible shielding effect of tomato plants once the endophyte was established inside the roots. Vice versa, a possible alleviation of CuO-NPs, ZnO-NPs, and ZnSO4 toxicity was observed in the presence of FsK inside tomato roots in terms of plant dry weight. The results suggest that phytotoxicity of NPs in tomato treated plants should be considered before application and while both FsK and tomato are sensitive to NPs, their reciprocal benefits may extent to resistance towards these toxic agents.
To determine if Emergency Department (ED) or inpatient encounters for epilepsy or status epilepticus are associated with increased odds of cardiac arrhythmia or cardiac arrest over successively longer time frames.
The State Inpatient and ED Databases (from New York, Florida, and California) are statewide datasets containing data on 97% of hospitalizations and ED encounters from these states. In this retrospective, case-crossover study, we used International Classification of Diseases, Ninth Revision, Clinical Modification codes to identify index cardiac arrhythmia encounters. Exposures were inpatient or ED encounters for epilepsy or status epilepticus. The case-crossover analysis tested whether an epilepsy or status epilepticus encounter within various case periods (1, 3, 7, 30, 60, 90, and 180 days prior to index encounter) was associated with subsequent ED or inpatient encounter for cardiac arrhythmia, as compared to control periods of equal length one year prior.
The odds ratio (OR) for cardiac arrhythmia after an epilepsy encounter was significant at all time intervals (OR range 2.37-3.36), and highest at 1 day after epilepsy encounter (OR 3.63, 95% confidence interval [CI] 1.66-7.93, p = 0.0013). The OR after status epilepticus was significant at 7- to 180-day intervals (OR range 2.25-2.74), and highest at 60 days (OR 2.74, CI 2.09-3.61, p < 0.0001).
Epilepsy and status epilepticus events are associated with increased odds of subsequent cardiac arrhythmia or cardiac arrest over multiple chronic timeframes. Increased cardiac surveillance may be warranted to minimize morbidity and mortality in patients with epilepsy.
Epilepsy and status epilepticus events are associated with increased odds of subsequent cardiac arrhythmia or cardiac arrest over multiple chronic timeframes. Increased cardiac surveillance may be warranted to minimize morbidity and mortality in patients with epilepsy.In this study, 26 surface seawater samples, 26 surface sediment samples and 114 organisms were collected to study the trophic transfer and dietary exposure risk of mercury (Hg) in organisms from the Jiaozhou Bay, which is a typical semi-enclosed urbanized bay. The total mercury (THg) and methylmercury (MeHg) concentrations did not exceed the threshold limits and performed as fish > crustaceans > mollusks. The trophic level values (TLs) were less than 3 in all the groups, indicating simple structure of food chain. With the increasing δ15N value, THg and MeHg were significantly biomagnified in the mollusks and fish but not in the crustaceans. In addition, the bioaccumulation and biomagnification of MeHg were higher than inorganic mercury (IHg) in the aquatic food chain. Target hazard quotient (THQ) and provisional tolerable weekly intake (PTWI) indicated that Hg exposure via consumption of seafood from the Jiaozhou Bay did not pose significant health risks for general population. Consuming fish will face the higher health risk than crustaceans and mollusks, especially in urban regions. Moreover, the risk of MeHg caused by intaking seafood deserved more attention. Trophic transfer function (TTF) explicated the transfer of Hg in the ecosystem and higher trophic transfer efficiency of MeHg than IHg. TTF interpreted the terrestrial input of Hg should be controlled to ensure the safety of consuming seafood from the Jiaozhou Bay.Atmospheric chromophores have photo-sensitiveness that can participate in photochemical reactions, so they may have the potential to make an important contribution in organic aerosols aging. This study attempts to explain the effects of oxidation reaction and photochemical reaction on atmospheric chromophores. For this study, the summer period (higher sunshine intensity) was selected to observe the mechanisms by the online excitation emission matrix (EEM) fluorescence. The results showed that a lot of secondary organic aerosols were produced in the afternoon, but a large portion of them is non-chromophore. GSK1210151A supplier We observed that the secondary chromophores of highly-oxygenated humic-like substances (HULIS) were produced, which suggests a degradation product of less-oxygenated HULIS. The photochemical reaction and oxidation reaction were the important reactions that occur in the afternoon, which drives the oxidation state evolution of the atmospheric chromophores. Atmospheric oxidation processes are the mainly driving reaction for the transformation of atmospheric chromophore.
My Website: https://www.selleckchem.com/products/i-bet151-gsk1210151a.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team