Notes
![]() ![]() Notes - notes.io |
The Collaboration for Evidence-based Healthcare and Public Health in Africa (CEBHA+) is a research consortium concerned with the prevention, diagnosis and treatment of non-communicable diseases. CEBHA+ seeks to engage policymakers and practitioners throughout the research process in order to build lasting relationships, enhance evidence uptake, and create long-term capacity among partner institutions in Ethiopia, Malawi, Rwanda, South Africa and Uganda in collaboration with two German universities. This integrated knowledge translation (IKT) approach includes the formal development, implementation and evaluation of country specific IKT strategies.
We have conceptualised the CEBHA+ IKT approach as a complex intervention in a complex system. We will employ a comparative case study (CCS) design and mixed methods to facilitate an in-depth evaluation. We will use quantitative surveys, qualitative interviews, quarterly updates, and a policy document analysis to capture the process and outcomes of IKT across the a complex intervention such as the CEBHA+ IKT approach is complicated, even more so when undertaken across five diverse countries. Despite conceptual, methodological and practical challenges, our comparative case study addresses important evidence gaps While involving decision-makers in the research process is gaining traction worldwide, we still know very little regarding (i) whether this approach really makes a difference to evidence uptake, (ii) the mechanisms that make IKT successful, and (iii) relevant differences across socio-cultural contexts. The evaluation described here is intended to provide relevant insights on all of these aspects, notably in countries in Sub-Saharan Africa, and is expected to contribute to the science of IKT overall.
To evaluate our hypotheses that, when rheumatoid arthritis (RA) flares postpartum, gene expression patterns are altered compared to (a) healthy women, (b) RA women whose disease activity is low or in remission postpartum, and (c) pre-pregnancy expression profiles.
Twelve women with RA and five healthy women were included in this pilot study. RA disease activity and postpartum flare were assessed using the Clinical Disease Activity Index (CDAI). Total RNA from frozen whole blood was used for RNA sequencing. Differential gene expression within the same women (within-group) over time, i.e., postpartum vs. third trimester (T3) or pre-pregnancy (T0), were examined, using a significance threshold of q < 0.05 and fold-change ≥ 2.
Nine of the women with RA experienced a flare postpartum (RA
), while three had low disease activity or were in remission (RA
) during that time frame. check details Numerous immune-related genes were differentially expressed postpartum (vs. T3) during a flare. Fold-changes in expression from during a postpartum flare, a set of immune-related genes showed dysregulated expression compared to healthy women and women with RA whose disease activity was low or in remission during the same time frame, while other genes demonstrated significant differences in expression compared to RA pre-pregnancy levels.
The large majority of gene expression changes between T3 and 3 months postpartum among RA women who flared postpartum reflected normal postpartum changes also seen among healthy women. Nonetheless, during a postpartum flare, a set of immune-related genes showed dysregulated expression compared to healthy women and women with RA whose disease activity was low or in remission during the same time frame, while other genes demonstrated significant differences in expression compared to RA pre-pregnancy levels.
The IκB kinase (IKK) complex, comprising the two enzymes IKKα and IKKβ, is the main activator of the inflammatory transcription factor NF-κB, which is constitutively active in many cancers. While several connections between NF-κB signaling and the oncogene c-Myc have been shown, functional links between the signaling molecules are still poorly studied.
Molecular interactions were shown by co-immunoprecipitation and FRET microscopy. Phosphorylation of c-Myc was shown by kinases assays and its activity by improved reporter gene systems. CRISPR/Cas9-mediated gene knockout and chemical inhibition were used to block IKK activity. The turnover of c-Myc variants was determined by degradation in presence of cycloheximide and by optical pulse-chase experiments.. Immunofluorescence of mouse prostate tissue and bioinformatics of human datasets were applied to correlate IKKα- and c-Myc levels. Cell proliferation was assessed by EdU incorporation and apoptosis by flow cytometry.
We show that IKKα and IKKβ bind to c-Myc and phosphorylate it at serines 67/71 within a sequence that is highly conserved. Knockout of IKKα decreased c-Myc-activity and increased its T58-phosphorylation, the target site for GSK3β, triggering polyubiquitination and degradation. c-Myc-mutants mimicking IKK-mediated S67/S71-phosphorylation exhibited slower turnover, higher cell proliferation and lower apoptosis, while the opposite was observed for non-phosphorylatable A67/A71-mutants. A significant positive correlation of c-Myc and IKKα levels was noticed in the prostate epithelium of mice and in a variety of human cancers.
Our data imply that IKKα phosphorylates c-Myc on serines-67/71, thereby stabilizing it, leading to increased transcriptional activity, higher proliferation and decreased apoptosis.
Our data imply that IKKα phosphorylates c-Myc on serines-67/71, thereby stabilizing it, leading to increased transcriptional activity, higher proliferation and decreased apoptosis.
Despiteusing prognostic algorithms and standard surveillance guidelines, 17% of patients initially diagnosed with low risk clear cell renal cell carcinoma (ccRCC) ultimately relapse and die of recurrent disease, indicating additional molecular parameters are needed for improved prognosis.
To address the gap in ccRCC prognostication in the lower risk population, we performed a genome-wide analysis for methylation signatures capable of distinguishing recurrent and non-recurrent ccRCCs within the subgroup classified as 'low risk' by the Mayo Clinic Stage, Size, Grade, and Necrosis score (SSIGN 0-3). This approach revealed that recurrent patients have globally hypermethylated tumors and differ in methylation significantly at 5929 CpGs. Differentially methylated CpGs (DMCpGs) were enriched in regulatory regions and genes modulating cell growth and invasion. A subset of DMCpGs stratified low SSIGN groups into high and low risk of recurrence in independent data sets, indicating that DNA methylation enhances the prognostic power of the SSIGN score.
Read More: https://www.selleckchem.com/products/bobcat339.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team