Notes
![]() ![]() Notes - notes.io |
Clinicopathological data of 185 patients with NPC treated at Nanfang Hospital of Southern Medical University between January 2013 and December 2014 were retrospectively analyzed. SPSS statistical software was used to analyze the clinicopathological data related to radiotherapy efficacy. Three patients who achieved complete remission and three with disease progression after CRT were selected. Differentially expressed genes (DEGs) were screened via mRNA microarray analysis of primary diagnostic endoscopy specimens.
The peripheral blood leukocyte count, platelet count, and EBV-DNA copy number in NPC patients who were resistant to radiotherapy were higher than those in NPC patients who were sensitive to radiotherapy. The RobustRankAggreg (RRA) analysis method identified 392 DEGs, and the 66 most closely related genes among the DEGs were identified from the PPI network.
The results of this study indicate that screening for DEGs and pathways in NPC using integrated in silico analyses can help identify a series of genetic and clinical signatures for NPC patients treated with neoadjuvant chemotherapy followed by concurrent chemoradiotherapy.
The results of this study indicate that screening for DEGs and pathways in NPC using integrated in silico analyses can help identify a series of genetic and clinical signatures for NPC patients treated with neoadjuvant chemotherapy followed by concurrent chemoradiotherapy.The positive effects of mesenchymal stem cells (MSCs) are primarily activated through molecular secretions known as paracrine activity, which regulates the function of various cell types including immune cells. Accumulating evidence shows that exosomes of soluble factors released from MSCs are potential alternative agents for stem cell-based therapy, although the exact underlying mechanism has not been elucidated. The purpose of this study was to evaluate the potential effects of exosomes produced by adipose-derived MSCs and to examine the changes in anti-inflammatory genes in concurrence with the polarization of M2 macrophages in cellular models ex vivo. Isolated exosomes were used to investigate the inflammatory modulation in pro-inflammatory cytokine-treated fibroblasts and THP-1 cells. The anti-inflammatory mRNA expression associated with M2 macrophages was significantly upregulated after exosome treatment in an interferon gamma and tumor necrosis factor alpha-treated inflammatory environment. Furthermore, melatonin-stimulated exosomes exerted superior anti-inflammatory modulation via exosomal miRNAs miR-34a, miR-124, and miR-135b, compared with exosomes. Our results indicate that melatonin-stimulated exosomes originating from adipose-derived MSCs are safe and efficient tools for regenerative medicine to treat inflammatory diseases.Exosomes transmit certain amounts of molecules to specific recipient cells for intercellular communication. Among these molecules, messenger RNAs (mRNAs) may be delivered and translated into proteins in the recipient cells, and these mRNAs are thought to be critical mediators of exosomal functions. There are three subtypes of M2 macrophages (M2Ф), M2aФ, M2bФ, and M2cФ, which have different specific functional programs. The aim of the present study was to screen the mRNA profiles in the exosomes of these macrophage subtypes and to analyze the transcriptomic profile features associated with their specific functions. The mRNA contents of the exosomes isolated from the culture supernatants of the M2Ф subtypes were analyzed and compared using the Illumina HiSeq platform. The results indicated that the exosomes contained particular mRNAs from their source cells and were messengers of cellular functions. Bioinformatics analysis suggested that the exosomal mRNAs from M2bФs are enriched in the Toll-like receptor (TLR), tumor necrosis factor (TNF), NOD-like receptor (NLR), and NF-kappa B (NF-κB) signaling pathways. The mRNA profile of exosomes from M2bФ was distinctly different from that of exosomes from M2aФ and M2cФ and was consistent with the M2bФ cytological characteristic of maintaining a high level of proinflammatory cytokine and regulatory factor production. Therefore, the mRNA profiles revealed several characteristics of the exosomes from diverse forms of M2Ф. Further functional investigations based on these results may advance the understanding of the physiological roles of exosome-transferred mRNAs in MФ functions.
Combined aerobic and resistance training has been demonstrated to benefit glycemic control and reverse nonalcoholic fatty liver disease in childhood obesity. General control nonderepressible 2 (GCN2) deficiency has been reported to attenuate hepatic steatosis and insulin resistance. However, whether GCN2 impacts the positive effects of combined aerobic and resistance exercise remains unknown.
To investigate whether combined aerobic and resistance exercise improves hepatic steatosis and glucose intolerance and the role GCN2 plays in mediating the metabolic regulation of exercise.
Wild-type (WT) and
knockout (GCN2KO) mice were fed a high-fat diet (HFD) for 25 weeks. The WT and GCN2KO mice performed exercise (treadmill running + ladder climbing) during the last eight weeks. selleck inhibitor Their body and liver weights, their triglyceride content, and their levels of aspartate transaminase (AST), alanine transaminase (ALT), and blood glucose were measured, and the expressions of proteins involved in the GCN2/eIF2
/ATF4ntolerance. GCN2 was found to be necessary for exercise-induced improved glucose intolerance. However, the better efficacy in improving hepatic steatosis by exercise in the
-deficient mice enhanced liver lipid metabolism, at least partially, via the AMPK/SIRT1/PPAR
pathway.
Combined aerobic and resistance exercise had positive effects on hepatic steatosis and the control of glucose intolerance. GCN2 was found to be necessary for exercise-induced improved glucose intolerance. However, the better efficacy in improving hepatic steatosis by exercise in the GCN2-deficient mice enhanced liver lipid metabolism, at least partially, via the AMPK/SIRT1/PPARα pathway.Few studies have reported the function of LYNX1 in ovarian cancer. We retrieved LYNX1 gene expression data and clinical information of 376 patients with ovarian cancer from The Cancer Genome Atlas (TCGA) project website. Wilcoxon signed-rank test and logistic regression were used to analyze the relationship between clinical pathologic features and LYNX1 expression. The Kaplan-Meier method was used to draw survival curves of patients, and Cox regression was used to calculate the relationship between LYNX1 expression and survival rate or the clinicopathological characteristics of the patients. Gene set enrichment analysis (GSEA) was performed, and the correlation between LYNX1 expression and cancer immune infiltrates was investigated via single sample gene set enrichment analysis (ssGSEA). High LYNX1 expression in ovarian serous cystadenocarcinoma (OVs) was associated with tumor residual disease (RD). In Kaplan-Meier survival analysis, patients with OVs who also displayed high LYNX1 expression had decreased overall survival (OS) and disease-specific survival (DSS) than those with low LYNX1 expression.
Website: https://www.selleckchem.com/products/vx-561.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team