Notes
![]() ![]() Notes - notes.io |
We study how sensory neurons detect and transmit a weak external stimulus. We use the FitzHugh-Nagumo model to simulate the neuronal activity. We consider a sub-threshold stimulus, i.e., the stimulus is below the threshold needed for triggering action potentials (spikes). However, in the presence of noise the neuron that perceives the stimulus fires a sequence of action potentials (a spike train) that carries the stimulus' information. To yield light on how the stimulus' information can be encoded and transmitted, we consider the simplest case of two coupled neurons, such that one neuron (referred to as neuron 1) perceives a subthreshold periodic signal but the second neuron (neuron 2) does not perceive the signal. We show that, for appropriate coupling and noise strengths, both neurons fire spike trains that have symbolic patterns (defined by the temporal structure of the inter-spike intervals), whose frequencies of occurrence depend on the signal's amplitude and period, and are similar for both neurons. selleck products In this way, the signal information encoded in the spike train of neuron 1 propagates to the spike train of neuron 2. Our results suggest that sensory neurons can exploit the presence of neural noise to fire spike trains where the information of a subthreshold stimulus is encoded in over expressed and/or in less expressed symbolic patterns.We study the coarse-graining approach to derive a generator for the evolution of an open quantum system over a finite time interval. The approach does not require a secular approximation but nevertheless generally leads to a Lindblad-Gorini-Kossakowski-Sudarshan generator. By combining the formalism with full counting statistics, we can demonstrate a consistent thermodynamic framework, once the switching work required for the coupling and decoupling with the reservoir is included. Particularly, we can write the second law in standard form, with the only difference that heat currents must be defined with respect to the reservoir. We exemplify our findings with simple but pedagogical examples.In Italy, the elections occur often, indeed almost every year the citizens are involved in a democratic choice for deciding leaders of different administrative entities. Sometimes the citizens are called to vote for filling more than one office in more than one administrative body. This phenomenon has occurred 35 times after 1948; it creates the peculiar condition of having the same sample of people expressing decisions on political bases at the same time. Therefore, the Italian contemporaneous ballots constitute the occasion to measure coherence and chaos in the way of expressing political opinion. In this paper, we address all the Italian elections that occurred between 1948 and 2018. We collect the number of votes per party at each administrative level and we treat each election as a manifestation of a complex system. Then, we use the Shannon entropy and the Gini Index to study the degree of disorder manifested during different types of elections at the municipality level. A particular focus is devoted to the contemporaneous elections. Such cases implicate different disorder dynamics in the contemporaneous ballots, when different administrative level are involved. Furthermore, some features that characterize different entropic regimes have emerged.In the field of business research method, a literature review is more relevant than ever. Even though there has been lack of integrity and inflexibility in traditional literature reviews with questions being raised about the quality and trustworthiness of these types of reviews. This research provides a literature review using a systematic database to examine and cross-reference snowballing. In this paper, previous studies featuring a generalized autoregressive conditional heteroskedastic (GARCH) family-based model stock market return and volatility have also been reviewed. The stock market plays a pivotal role in today's world economic activities, named a "barometer" and "alarm" for economic and financial activities in a country or region. In order to prevent uncertainty and risk in the stock market, it is particularly important to measure effectively the volatility of stock index returns. However, the main purpose of this review is to examine effective GARCH models recommended for performing market returns and volatilities analysis. The secondary purpose of this review study is to conduct a content analysis of return and volatility literature reviews over a period of 12 years (2008-2019) and in 50 different papers. The study found that there has been a significant change in research work within the past 10 years and most of researchers have worked for developing stock markets.Optimal realizations of quantum technology tasks lead to the necessity of a detailed analytical study of the behavior of a d-level quantum system (qudit) under a time-dependent Hamiltonian. In the present article, we introduce a new general formalism describing the unitary evolution of a qudit ( d ≥ 2 ) in terms of the Bloch-like vector space and specify how, in a general case, this formalism is related to finding time-dependent parameters in the exponential representation of the evolution operator under an arbitrary time-dependent Hamiltonian. Applying this new general formalism to a qubit case ( d = 2 ) , we specify the unitary evolution of a qubit via the evolution of a unit vector in R 4 , and this allows us to derive the precise analytical expression of the qubit unitary evolution operator for a wide class of nonstationary Hamiltonians. This new analytical expression includes the qubit solutions known in the literature only as particular cases.Due to the wide inter- and intra-individual variability, short-term heart rate variability (HRV) analysis (usually 5 min) might lead to inaccuracy in detecting heart failure. Therefore, RR interval segmentation, which can reflect the individual heart condition, has been a key research challenge for accurate detection of heart failure. Previous studies mainly focus on analyzing the entire 24-h ECG recordings from all individuals in the database which often led to poor detection rate. In this study, we propose a set of data refinement procedures, which can automatically extract heart failure segments and yield better detection of heart failure. The procedures roughly contain three steps (1) select fast heart rate sequences, (2) apply dynamic time warping (DTW) measure to filter out dissimilar segments, and (3) pick out individuals with large numbers of segments preserved. A physical threshold-based Sample Entropy (SampEn) was applied to distinguish congestive heart failure (CHF) subjects from normal sinus rhythm (NSR) ones, and results using the traditional threshold were also discussed.
Website: https://www.selleckchem.com/products/vorapaxar.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team