Notes
![]() ![]() Notes - notes.io |
Barth syndrome is a rare, life-threatening, X-linked recessive genetic disease that predominantly affects young males and is caused by abnormal mitochondrial lipid metabolism. Currently, there is no definitive treatment for Barth syndrome other than interventions to ameliorate acute symptoms, such as heart failure, cardiac arrhythmias, neutropenia, and severe muscle fatigue. Previous mechanistic studies have identified the lipid-lowering drug bezafibrate as a promising potential treatment; however, to date, no human trials have been performed in this population.
The aim of this study is to determine whether bezafibrate (and resveratrol in vitro) will increase mitochondrial biogenesis and potentially modify the cellular ratio of monolysocardiolipin (MLCL) to tetralinoleoyl-cardiolipin (L4-CL), ameliorating the disease phenotype in those living with the disease.
The CARDIOMAN (Cardiolipin Manipulation) study is a UK single-center, double-blinded, randomized, placebo-controlled crossover study investigatinp was completed in January 2020. Data analysis is ongoing, with publication expected in 2021.
This trial was approved by the United Kingdom National Research Ethics Service Committee and the Medicines and Healthcare products Regulatory Agency. The feasibility of the CARDIOMAN study will help to inform the future conduct of randomized controlled trials in rare disease populations as well as testing the efficacy of bezafibrate as a potential treatment for the disease and advancing the mechanistic understanding of Barth syndrome.
International Standard Randomized Controlled Trial Number (ISRCTN) 58006579; https//www.isrctn.com/ISRCTN58006579.
DERR1-10.2196/22533.
DERR1-10.2196/22533.
Cognitive behavioral therapy (CBT) for bulimia nervosa (BN) is most effective when patients demonstrate adequate skill utilization (ie, the frequency with which a patient practices or uses therapeutic skills) and skill acquisition (ie, the ability to successfully perform a skill learned in treatment). However, rates of utilization and acquisition of key treatment skills (eg, regular eating, urge management skills, and mood management skills) by the end of the treatment are frequently low; as a result, outcomes from CBT for BN are affected. Just-in-time adaptive interventions (JITAIs) may improve skill acquisition and utilization by delivering real-time interventions during algorithm-identified opportunities for skill practice.
In this manuscript, we describe a newly developed JITAI system called CBT+ that is designed to facilitate the acquisition and utilization of CBT for BN treatment skills when used as a treatment augmentation. We also present feasibility, acceptability, and preliminary outcomes data f a treatment augmentation, was shown to be feasible and acceptable. The results indicate that the CBT+ system should be subjected to more rigorous evaluations with larger samples and should be considered for wider implementation if found effective. Areas for iterative improvement of the CBT+ system ahead of a randomized controlled trial are also discussed.
Specific learning difficulties (SpLD) include several disorders such as dyslexia, dyscalculia, and dysgraphia, and the children with these SpLD receive special education. However, the studies and the educational material so far focus mainly on one specific disorder.
This study's primary goal is to develop comprehensive training material for different types of SpLD, with five serious games addressing different aspects of the SpLD. The second focus is measuring the impact of adaptive difficulty level adjustment in the children's and their educators' usability and technology acceptance perception. Receiving feedback from the children and their educators, and refining the games according to their suggestions have also been essential in this two-phase study.
A total of 10 SpLD educators and 23 children with different types of SpLD tested the prototypes of the five serious games (ie, Word game, Memory game, Category game, Space game, and Math game), gave detailed feedback, answered the System Usability Scale zed and tailored difficulty systems. The final version of the proposed games will become a part of the special education centers' supplementary curriculum and training materials, making new enhancements and improvements possible in the future.
Both the educators and the children with SpLD enjoyed playing the games, gave positive feedback, and suggested new ways for improvement. The results showed that these games provide thorough training material for different types of SpLD with personalized and tailored difficulty systems. The final version of the proposed games will become a part of the special education centers' supplementary curriculum and training materials, making new enhancements and improvements possible in the future.
Pituitary adenoma is one of the most common central nervous system tumors. The diagnosis and treatment of pituitary adenoma remain very difficult. Misdiagnosis and recurrence often occur, and experienced neurosurgeons are in serious shortage. A knowledge graph can help interns quickly understand the medical knowledge related to pituitary tumor.
The aim of this study was to develop a data fusion method suitable for medical data using data of pituitary adenomas integrated from different sources. The overall goal was to construct a knowledge graph for pituitary adenoma (KGPA) to be used for knowledge discovery.
A complete framework suitable for the construction of a medical knowledge graph was developed, which was used to build the KGPA. The schema of the KGPA was manually constructed. read more Information of pituitary adenoma was automatically extracted from Chinese electronic medical records (CEMRs) and medical websites through a conditional random field model and newly designed web wrappers. An entity fusion method is proposed based on the head-and-tail entity fusion model to fuse the data from heterogeneous sources.
Data were extracted from 300 CEMRs of pituitary adenoma and 4 health portals. Entity fusion was carried out using the proposed data fusion model. The F1 scores of the head and tail entity fusions were 97.32% and 98.57%, respectively. Triples from the constructed KGPA were selected for evaluation, demonstrating 95.4% accuracy.
This paper introduces an approach to fuse triples extracted from heterogeneous data sources, which can be used to build a knowledge graph. The evaluation results showed that the data in the KGPA are of high quality. The constructed KGPA can help physicians in clinical practice.
This paper introduces an approach to fuse triples extracted from heterogeneous data sources, which can be used to build a knowledge graph. The evaluation results showed that the data in the KGPA are of high quality. The constructed KGPA can help physicians in clinical practice.
Homepage: https://www.selleckchem.com/products/ac-fltd-cmk.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team