NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Inflammatory intestinal disease prone gene GPR35 promotes colon infection inside mice.
Spectral reflectometry is a spectroscopic measurement technique based on thin-film interference, which has been widely applied in industries to measure thicknesses of thin dielectric layers at the nanoscale. Recent advances in the understanding of biological nanostructures have opened a new field of spectral reflectometry in biomedicine from molecular level sensing to biomedical imaging. This chapter comprehensively covers the relevant topics on spectral reflectometry in biomedicine from its principle to applications.Optical coherence tomography (OCT) is a three-dimensional (3-D) optical imaging technology that provides noninvasive, micrometer resolution images of structural interiors within biological samples with an approximately 1 ~ 2 mm penetration depth. Over the last decades, advances in OCT have revolutionized biomedical imaging by demonstrating a potential of optical biopsy in preclinical and clinical settings. Recently, functional OCT imaging has shown a promise as angiography to visualize cell-perfused vasculatures in the tissue bed in vivo without requiring any exogenous contrast agents. This new technology termed OCT angiography (OCTA) possesses a unique imaging capability of delineating tissue morphology and blood or lymphatic vessels down to capillaries at real-time acquisition rates. For the past 10 years since 2007, OCTA has been proven to be a useful tool to identify disorder or dysfunction in tissue microcirculation from both experimental animal studies and clinical studies in ophthalmology and dermatology. In this section, we overview about OCTA including a basic principle of OCTA explained with simple optical physics, and its scan protocols and post-processing algorithms for acquisition of angiography. Then, potential and challenge of OCTA for clinical settings are shown with outcomes of human studies.After the emergence of the ultrasound, X-ray CT, PET, and MRI, photoacoustic tomography (PAT) is now in the phase of its exponential growth, with its expected full maturation being another form of mainstream clinical imaging modality. By combining the high contrast benefit of optical imaging and the high-resolution deep imaging capability of ultrasound, PAT can provide unprecedented anatomical image contrasts at clinically relevant depths as well as enable the use of a variety of functional and molecular imaging information, which is not possible with conventional imaging modalities. With these strengths, PAT has achieved numerous breakthroughs in various biomedical applications and also provided new technical platforms that may be able to resolve unmet issues in clinics. In this chapter, we provide an overview of the development of PAT technology for several major biomedical applications and provide an approximate projection of the future of PAT.Live cell imaging provides essential information in the investigation of cell biology and related pathophysiology. Refractive index (RI) can serve as intrinsic optical imaging contrast for 3-D label-free and quantitative live cell imaging, and provide invaluable information to understand various dynamics of cells and tissues for the study of numerous fields. D34919 Recently significant advances have been made in imaging methods and analysis approaches utilizing RI, which are now being transferred to biological and medical research fields, providing novel approaches to investigate the pathophysiology of cells. To provide insight into how RI can be used as an imaging contrast for imaging of biological specimens, here we provide the basic principle of RI-based imaging techniques and summarize recent progress on applications, ranging from microbiology, hematology, infectious diseases, hematology, and histopathology.Given the merit of high-resolution cross-sectional imaging, magnetic resonance imaging (MRI) has been utilized in many preclinical and clinical research fields. In addition to T2-weighted imaging for assessing anatomic changes by disease and therapeutic agents, diffusion-weighted imaging, dynamic contrast-enhanced MRI, and MR spectroscopy can provide disease- and drug-specific functional information in both in vivo and ex vivo status. Another advantage of MRI is its ability to bridge the preclinical and clinical experiments as it allows similar study methods and environments between animals and humans. Therefore, MRI can be used as a useful tool for drug development. Investigators have discovered a variety of MRI biomarkers that can quantitatively measure the biological alteration led by disease and treatment. In this chapter, a number of commonly used preclinical MRI biomarkers for drug development will be introduced and discussed, particularly being focused on their value for translational research.Intravital microscopy has emerged as a powerful technique for the fluorescent visualization of cellular- and subcellular-level biological processes in vivo. However, the size of objective lenses used in standard microscopes currently makes it difficult to access internal organs with minimal invasiveness in small animal models, such as mice. Here we describe front- and side-view designs for small-diameter endoscopes based on gradient-index lenses, their construction, their integration into laser scanning confocal microscopy platforms, and their applications for in vivo imaging of fluorescent cells and microvasculature in various organs, including the kidney, bladder, heart, brain, and gastrointestinal tracts, with a focus on the new techniques developed for each imaging application. The combination of novel fluorescence techniques with these powerful imaging methods promises to continue providing novel insights into a variety of diseases.Since their development in the 1960s, immuno-gold techniques have been steadily used in biomedical science, because these techniques are applicable to all kinds of antigens, from viruses to animal tissues. Immuno-gold staining exploits antigen-antibody reactions and is used to investigate locations and interactions of components in the ultrastructure of tissues, cells, and particles. These methods are increasingly used with advanced technologies, such as correlative light and electron microscopy and cryo-techniques. In this protocol, we introduce the principles and technical details of recent advances in this area and discuss their advantages and limitations.
Here's my website: https://www.selleckchem.com/products/d34-919.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.