Notes
![]() ![]() Notes - notes.io |
Когда вы направляете лазерный луч на светоделитель, создаётся впечатление, что луч света разделился надвое — кажется, что обе траектории существуют одновременно. На самом деле, если вы запустите отдельные фотоны на светоделитель и проведёте измерение, вы обнаружите, что каждый фотон следует только по одному пути. Когда вы запускаете множество фотонов примерно из одних и тех же начальных условий (что и делает лазер), вы можете отобразить форму волновой функции путём стохастической выборки множества траекторий. Если бы у вас была сеть светоделителей, рекурсивно разделяющих разделённые лучи, то волновая функция имела бы форму дерева, и вы могли бы увидеть её всю сразу, направив лазер на измерительное устройство. Если бы мы находились вне системы, мы могли бы наблюдать, как множество слов, порождаемых в каждое мгновение, разрастаются в ветвящиеся мультивселенные.
Как разработчики обучают языковые модели
Структура зависит от того, какая математическая модель использовалась при создании. Первые языковые модели были статистическими, основанными на вероятностном алгоритме цепей Маркова. Более поздние имели в своей основе рекуррентные нейронные сети (RNN) — вид нейросетей, предназначенный для обработки последовательных данных. Поэтому главная особенность обучения языковых моделей — необходимость особенно тщательной и тонкой настройки обучающей стратегии, чтобы избежать ошибок. В остальном, структурно и концептуально, подход к обучению остается таким же. Самый простой способ сделать это, который поддерживает API OpenAI, — это логит-смещения.
Создавайте подробный контекст
Компонент может быть стилистическим, например, временем повествования, или абстрактным семантическим свойством, например, отношениями между двумя персонажами, или конкретным семантическим свойством, например, какие персонажи присутствуют в сцене. Однако многие пользователи AI Dungeon сообщат, что GPT-3 чудесным образом дополнил их реальность, раскрывая творческие возможности, которые были невообразимы ещё год назад. Действительно, неизбежно[8], что искусственный интеллект превзойдёт нынешние человеческие возможности во всех измерениях. Каждый мир в суперпозиции не только оказывает самостоятельное воздействие на воображение читателя, но и взаимодействует с контрфактуалами (герой осознаёт неопределённость моральных установок своего наставника, и это влияет на его действия).
Построенный на основе научных библиотек Python (NumPy, SciPy и Matplotlib), Scikit-learn выделяется своей интеграцией с научным стеком Python и эффективностью работы с массивами NumPy и разреженными матрицами SciPy. Класс из библиотеки transformers для запуска модели CausalLM называется AutoModelForCausalLM. Класс конфигурации дообучения LoRA называется LoraConfig, а класс для запуска обучения из библиотеки trl называется SFTTrainer. Также есть хороший практический пример дообучения Phi-2 с медицинским датасетом [9].
Этот подход основан на нейросетях, которые, благодаря многослойной структуре, способны выявлять сложные взаимосвязи между входными характеристиками и целевыми результатами. Позиционная языковая модель[17] оценивает вероятность того, что данные слова встречаются в тексте близко друг к другу, не обязательно непосредственно рядом. Как правило, вероятности n-граммной модели не выводятся непосредственно из подсчёта частот, потому что модели, полученные таким образом, имеют серьёзные проблемы при столкновении с любыми n-граммами, которые ранее явно не наблюдались. статья Вместо этого необходима некоторая форма сглаживания, приписывающая часть общей вероятностной массы невидимым словам или n-граммам. Используются различные методы, от простого сглаживания «добавь один» (присваивание числа 1 невидимым n-граммам в качестве неинформативного априорного) до более сложных моделей, таких как модели Гуда — Тьюринга[англ.] или Катца[англ.].
Глубокие нейросети состоят из https://cmu.edu/artificial-intelligence/ множества уровней, что позволяет им выявлять высокоуровневые закономерности в данных. Это слои, которые определяют положение слова в смысловом векторе на основе его позиции в предложении. Они полезны в ситуациях, когда слово меняет смысл в зависимости от его расположения. Благодаря своим размерам и особенностям архитектуры LLM отличаются большей гибкостью. Одну и ту же модель можно использовать и для генерации кода, и для имитации живого диалога или придумывания историй.
Одной из ключевых синтетических задач в исследовании языковых моделей является проверка принадлежности последовательности к грамматике Хомского. Эта задача сводится к определению возможности генерации определенной последовательности токенов на основе заданных правил. Исследования показали, что языковая модель GPT справляется с этой задачей с высокой эффективностью, демонстрируя способность не только генерировать последовательности, но и анализировать их структуру. В отличие от GPT, модель BERT показывает худшие результаты в этом контексте, что может быть связано с особенностями архитектуры и способами обработки информации. Эта разница в производительности подчеркивает важность выборки и типа задач, на которых обучаются модели, а также роль синтаксических структур в понимании и генерации языка. Узнавание грамматических правил и зависимостей в последовательностях является неотъемлемой частью развития обобщающих способностей LLM, что открывает новые перспективы для их применения в более сложных языковых задачах.
В итоге этот подход демонстрирует баланс между точностью и вычислительной эффективностью, делая его оптимальным вариантом для генерации реалистичных синтетических данных в больших масштабах. Первые языковые модели были статистическими, основанными на вероятностном алгоритме цепей Маркова. Если вероятность дословной последовательности является хорошим показателем того, что вы действительно хотите измерить, это удобный способ измерения импульсной реакции, поскольку он не требует многократных проб и дает точное значение. На основе этого обучения они способны делать предсказания для новых, ранее не встречавшихся данных. Важными составляющими машинного обучения являются глубокое обучение и нейронные сети, которые позволяют решать особенно сложные задачи анализа данных. На практике семплирование с использованием top-p обычно дает более качественные результаты, чем top-k.
Инженер — прагматичный профессионал, который больше доверяет процессам обучения модели, чем людям. Научный офицер — молодой специалист по квантовой физике и моделям генерации текста, недавно обнаруживший странную аномалию в показаниях приборов. "Создай научно-фантастический рассказ, учитывая особенности обучения модели, объемом до 500 слов. Воспринимайте ответы ИИ как черновик или отправную точку для дальнейшей проверки. Особенно если речь идёт о важных решениях или требуется фактическая точность.
Если двигаться по карте в любом направлении, то можно встретить разные формы этого слова. Например, на карте языковой модели есть направление, соответствующее тому, чтобы быть актёром. Чем дальше вы продвигаетесь в этом направлении, тем больше вероятность того, что конструируемое вами слово относится к актёру. Подобные плагины можно применять тогда, когда необходимо получить доступ к внешним источникам данных, автоматизировать задачи, а также для улучшения пользовательского опыта [7]. RNN работают, анализируя каждое входящее слово, отслеживая информацию из более ранних слов, что позволяет им создавать текст, который является связным и подходящим для контекста.
My Website: https://auslander.expert/ai-content-riski-resheniya/
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team