Notes
![]() ![]() Notes - notes.io |
Computational time and cost remain a major bottleneck for RNA-seq data analysis of nonmodel organisms without reference genomes. To address this challenge, we have developed Seq2Fun, a novel, all-in-one, ultrafast tool to directly perform functional quantification of RNA-seq reads without transcriptome de novo assembly. The pipeline starts with raw read quality control sequencing error correction, removing poly(A) tails, and joining overlapped paired-end reads. selleck compound It then conducts a DNA-to-protein search by translating each read into all possible amino acid fragments and subsequently identifies possible homologous sequences in a well-curated protein database. Finally, the pipeline generates several informative outputs including gene abundance tables, pathway and species hit tables, an HTML report to visualize the results, and an output of clean reads annotated with mapped genes ready for downstream analysis. Seq2Fun does not have any intermediate steps of file writing and loading, making I/O very efficient. Seq2Fun is written in C++ and can run on a personal computer with a limited number of CPUs and memory. It can process >2,000,000 reads/min and is >120 times faster than conventional workflows based on de novo assembly, while maintaining high accuracy in our various test data sets.
The Reminiscence Functions Scale (RFS), a reliable and valid 43-item scale, measures eight specific reasons as to why people reminisce. The current literature lacks an Arabic version of empirically-validated tools that measure reminiscence functions. This study aimed to test the psychometric properties of the translated version of the RFS in a sample of Arabic speakers from Jordan.
The scale was first translated into Arabic and then was translated back into English. A committee of experts reviewed the Arabic scale and then confirmed its content validity. A convenience, snowball sample of 422 subjects completed the Arabic RFS. Exploratory factor analysis (EFA) and the internal consistency method were used to evaluate the factorial structure and reliability of the Arab RFS, respectively.
The Arabic RFS reported excellent content validity. EFA yielded a six-factor, 39-item structure that accounted for 52% of the variance. Cronbach's alphas for the six factors ranged from 0.82 to 0.91, indicating good to excellent internal consistency.
The Arabic RFS is a valid and reliable measure of reminiscence functions for Jordanian adults.
The Arabic RFS is a valid and reliable measure of reminiscence functions for Jordanian adults.Three-dimensional (3D), submillimeter-scale constructs of neural cells, known as cortical spheroids, are of rapidly growing importance in biological research because these systems reproduce complex features of the brain in vitro. Despite their great potential for studies of neurodevelopment and neurological disease modeling, 3D living objects cannot be studied easily using conventional approaches to neuromodulation, sensing, and manipulation. Here, we introduce classes of microfabricated 3D frameworks as compliant, multifunctional neural interfaces to spheroids and to assembloids. Electrical, optical, chemical, and thermal interfaces to cortical spheroids demonstrate some of the capabilities. Complex architectures and high-resolution features highlight the design versatility. Detailed studies of the spreading of coordinated bursting events across the surface of an isolated cortical spheroid and of the cascade of processes associated with formation and regrowth of bridging tissues across a pair of such spheroids represent two of the many opportunities in basic neuroscience research enabled by these platforms.Understanding the mechanisms of myogenesis in human induced pluripotent stem cells (hiPSCs) is a prerequisite to achieving patient-specific therapy for diseases of skeletal muscle. hiPSCs of different origin show distinctive kinetics and ability to differentiate into myocytes. To address the unique cellular and temporal context of hiPSC differentiation, we perform a longitudinal comparison of the transcriptomic profiles of three hiPSC lines that display differential myogenic specification, one robust and two blunted. We detail temporal differences in mechanisms that lead to robust myogenic specification. We show gene expression signatures of putative cell subpopulations and extracellular matrix components that may support myogenesis. Furthermore, we show that targeted knockdown of ZIC3 at the outset of differentiation leads to improved myogenic specification in blunted hiPSC lines. Our study suggests that β-catenin transcriptional cofactors mediate cross-talk between multiple cellular processes and exogenous cues to facilitate specification of hiPSCs to mesoderm lineage, leading to robust myogenesis.The stop-signal paradigm, a primary experimental paradigm for understanding cognitive control and response inhibition, rests upon the theoretical foundation of race models, which assume that a go process races independently against a stop process that occurs after a stop-signal delay (SSD). We show that severe violations of this independence assumption at short SSDs occur systematically across a wide range of conditions, including fast and slow reaction times, auditory and visual stop signals, manual and saccadic responses, and especially in selective stopping. We also reanalyze existing data and show that conclusions can change when short SSDs are excluded. Last, we suggest experimental and analysis techniques to address this violation, and propose adjustments to extant models to accommodate this finding.Metal-organic frameworks (MOFs), which are self-assemblies of metal ions and organic ligands, provide a tunable platform to search a new state of matter. A two-dimensional (2D) perfect kagome lattice, whose geometrical frustration is a key to realizing quantum spin liquids, has been formed in the π - d conjugated 2D MOF [Cu3(C6S6)] n (Cu-BHT). The recent discovery of its superconductivity with a critical temperature T c of 0.25 kelvin raises fundamental questions about the nature of electron pairing. Here, we show that Cu-BHT is a strongly correlated unconventional superconductor with extremely low superfluid density. A nonexponential temperature dependence of superfluid density is observed, indicating the possible presence of superconducting gap nodes. The magnitude of superfluid density is much smaller than those in conventional superconductors and follows the Uemura's relation of strongly correlated superconductors. These results imply that the unconventional superconductivity in Cu-BHT originates from electron correlations related to spin fluctuations of kagome lattice.
Website: https://www.selleckchem.com/products/ku-0060648.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team