Notes
![]() ![]() Notes - notes.io |
Formation of the thioanisole radical cation derivatives is detected by the stopped-flow transient absorption measurements in OAT from 1 to 2,4-dimethoxythioanisole and 3,4-dimethoxythioanisole, being compared with that in the photoinduced electron transfer oxidation of PhSMe derivatives, which are detected by laser-induced transient absorption measurements. Similarly, OAT from 1 to Ph3P occurs via electron transfer from Ph3P to 1, and the proton effect on the reaction rate has been discussed. The rate constants of electron transfer from electron donors, including PhSMe and Ph3P derivatives, to 1 are fitted well by the electron transfer driving force dependence of the rate constants predicted by the Marcus theory of outer-sphere electron transfer.A comparative study has been attempted on 1-substituted 2-(pyridin-2-yl)-1H-benzo[d]imidazole ligand-coordinated copper and cobalt metal complex electrolytes Cu+/2+[nbpbi]2(PF6-)1/2, Cu+/2+[npbi]2(PF6-)1/2, Co2+/3+[nbpbi]3(PF6-)2/3, and Co2+/3+[npbi]3(PF6-)2/3 in dry acetonitrile coupled with both N3 and N719 dyes in dye-sensitized solar cell (DSSC) devices. Impressively, the copper metal sites coordinated with ligands nbpbi (L1) and npbi (L2) shift the redox potential about 190-200 mV and pave the way to achieve remarkably higher power current efficiency, which is clarified with cyclic voltammetry, electrochemical impedance spectrum, electron lifetime, and quasi Fermi-level experimental results. Overall efficiencies of 4.99, 4.82, 3.26, and 3.19% under 1 sun conditions (100 mW cm-2) were obtained for Cu+/2+[nbpbi]2(PF6-)1/2 and Cu+/2+[npbi]2(PF6-)1/2 electrolytes coupled with the sensitizers (N3 and N719 dyes), which are considerably higher than those acquired for devices containing the cobalt electrolytes. enzo[d]imidazole ligand-based electrolytes as very promising copper electrolytes for further improvements of extremely efficient liquid DSSCs.Herein, a new series of magnetic Fe-doped CoO nanocomposites (Fe-CoO NCs) with dual enzyme-like activities (peroxidase and oxidase) were successfully synthesized. The molar ratio of Fe3+/Co2+ salts during the solvothermal process determined the morphology and catalytic activity of the NCs. Among them, the flower-like 0.15Fe-CoO NCs showed high peroxidase-mimicking activity over a wider pH range of 4-5 and a temperature range of 30-50 °C. Such nanozymes were applied for constructing a facile and sensitive colorimetric sensor to detect H2O2 and dopamine (DA) in the linear ranges of 6-20 and 2-10 μM with limits of detection (LODs) of 4.40 and 1.99 μM, respectively. The excellent magnetic separation performance and successful DA detection in human urine samples validated the promising application of CoO-based nanozymes in medical diagnosis. The superior catalytic behaviors of 0.15Fe-CoO NCs could be ascribed to the high surface area, open mesoporous structure, increased surface active species, and the facile redox of Fe3+/Fe2+ and Co3+/Co2+. Based on the results of the fluorescent probe and radical trapping tests, the possible mechanism that Fe doping promoted the decomposition of H2O2 to produce hydroxyl radical (•OH) and superoxide radical (•O2-) was proposed.We report an asymmetric homocoupling of ortho-(iodo)arylphosphine oxides and ortho-(iodo)arylphosphonates resulting in highly enantioenriched axially chiral bisphosphine oxides and bisphosphonates. These products are readily converted to enantioenriched biaryl bisphosphines without need for chiral auxiliaries or optical resolution. This provides a practical route for the development of previously uninvestigated atroposelective biaryl bisphosphine ligands. The conditions have also proven effective for asymmetric dimerization of other, non-phosphorus-containing aryl halides.We report a novel approach toward the catalytic hydrogenation of CO2 to methanol performed in the gas-solid phase using multinuclear iridium complexes at low temperature (30-80 °C). Although homogeneous CO2 hydrogenation in water catalyzed by amide-based iridium catalysts provided only a negligible amount of methanol, the combination of a multinuclear catalyst and gas-solid phase reaction conditions led to the effective production of methanol from CO2. The catalytic activities of the multinuclear catalyst were dependent on the relative configuration of each active species. Conveniently, methanol obtained from the gas phase could be easily isolated from the catalyst without contamination with CO, CH4, or formic acid (FA). The catalyst can be recycled in a batchwise manner via gas release and filling. A final turnover number of 113 was obtained upon reusing the catalyst at 60 °C and 4 MPa of H2/CO2 (31). The high reactivity of this system has been attributed to hydride complex formation upon exposure to H2 gas, suppression of the liberation of FA under gas-solid phase reaction conditions, and intramolecular multiple hydride transfer to CO2 by the multinuclear catalyst.NiFe oxyhydroxide is one of the most promising oxygen evolution reaction (OER) catalysts for renewable hydrogen production, and deciphering the identity and reactivity of the oxygen intermediates on its surface is a key challenge but is critical to the catalyst design for improving the energy efficiency. Here, we screened and utilized in situ reactive probes that can selectively target specific oxygen intermediates with high rates to investigate the OER intermediates and pathway on NiFe oxyhydroxide. Most importantly, the oxygen atom transfer (OAT) probes (e.g., 4-(diphenylphosphino) benzoic acid) could efficiently inhibit the OER kinetics by scavenging the OER intermediates, exhibiting lower OER currents, larger Tafel slopes, and larger kinetic isotope effect (KIE) values, while probes with other reactivities demonstrated much smaller effects. Combining the OAT reactivity with electrochemical kinetic and operando Raman spectroscopic techniques, we identified a resting Fe═O intermediate in the Ni-O scaffold and a rate-limiting O-O chemical coupling step between a Fe═O moiety and a vicinal bridging O. DFT calculation further revealed a longer Fe═O bond formed on the surface and a large kinetic energy barrier of the O-O chemical coupling step, corroborating the experimental results. NPS-2143 These results point to a new direction of liberating lattice O and expediting O-O coupling for optimizing NiFe-based OER electrocatalyst.
Website: https://www.selleckchem.com/products/nps-2143.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team