Notes
![]() ![]() Notes - notes.io |
The role of nanobiotechnology in the treatment of diseases is limitless. In this review we tried to focus main aspects of nanotechnology in drug carrier systems for treatment and diagnosis of various diseases such as cancer, pulmonary diseases, infectious diseases, vaccine development, diabetes mellitus and the role of nanotechnology on our economy and its positive social impacts on our community. We discussed here about the different "Biotechnano Strategies" to develop new avenues and ultimately improve the treatment of multiple diseases.Kisspeptin is a 54- amino acid peptide that acts as a ligand of a receptor called GPR54 which is basically a transmembrane receptor that spins seven times across the cell membrane and coupled with G-protein. Kisspeptin regulates the development of reproductive functions and the onset of puberty in human and other mammals by acting at the brain, hypothalamus, pituitary and gonad levels of reproductive axis. Kisspeptin is also involved in regulation of trophoblastic invasion during pregnancy, ovulation, and sperm hyperactivation. Inactivating mutations in human kisspeptin gene (KISS1) cause idiopathic hypogonadotropic hypogonadism. Some mutations in human kisspeptin receptor gene (KISS1R) make the receptor inactive which result in idiopathic hypogonadotropic hypogonadism. Some mutations in human KISS1R gene make the receptor prematurely activated and result in the development of central precocious puberty. Central precocious puberty is also caused by some mutations in human KISS1 gene that make the kisspeptin resistant to degradation. This leads to an increased basal kisspeptin level and subsequently the development of central precocious puberty. Higher kisspeptin level has been detected in the serum and plasma of central precocious puberty patients, which suggest that serum or plasma kisspeptin level can be used as a marker for diagnosis of central precocious puberty.Full degradation of acetaminophen (paracetamol) in aqueous solution was investigated at room temperature through heterogeneous iron nano-structured as catalyst in this article. Iron Nano-structured was prepared through simple hydrothermal processes using Iron oxide (Fe2O3) as precursor. The catalytic activity of as prepared Nano-catalyst (NC) was investigated in the degradation of the acetaminophen as an environmental pollutant, commonly called paracetamol, under different operating parameters like pH, dosages of acetaminophen and dose of NC. Remarkable differences in IR spectra were observed after reaction which showed complete degradation of 15 ppm of Acetaminophen using 0.1 g of nano-structured with the recovery of NC followed by its activity four times with full catalytic performance.Gentamicin (GM) is a generally utilized as an antibiotic against dangerous and life threatening contaminations, yet its value is restricted by the development of nephrotoxicity. The present investigation was intended to decide the defensive impact of salicylic acid (SA) in gentamicin-induced nephrotoxicity in rabbits. Quantitative assessment of gentamicin-induced structural changes and level of functional modifications in the kidneys were performed by biochemical examinations keeping in mind the end goal is to decide the potential protective impacts of SA co-administration with gentamicin. Gentamicin was seen to cause a serious nephrotoxicity which was proved by a plasma urea, plasmacreatinine, plasma uric acid, plasma Na+, plasma K+, intra-erythrocyte Na+ and intra-erythrocyte K+ levels. On the other hand, simultaneous SA administration protected kidney tissue against the oxidative damage and the nephrotoxic effect caused by GM treatment. The outcomes from our investigation show that SA supplement lessens oxidative-stress related to renal damage by reducing oxygen free radicals in gentamicin-treated rabbits.The present study aimed to assess the effects of 3,4-dihydroxyacetophenone (DHAP) on human pulmonary artery smooth muscle cells (HPASMCs). HPASMCs were divided into the normoxia group (NG), hypoxia group (HG), and hypoxia and 0.6×10-4 mol/L (HD1), 1.9×10-4 mol/L (HD2) and 6.0×10-4 mol/L (HD3) DHAP treatment groups. Cell cycle was analyzed by flow-cytometrically. HPASMC growth was examined by the proliferating cell nuclear antigen (PCNA) and MTT assays. Intracellular Ca2+ ([Ca2+]i) was measured by laser scanning confocal microscopy. Compared with the NG, the HG showed significantly increased HPASMC proliferation (P less then 0.05); meanwhile, cells treated with DHAP showed decreased proliferation compared with the HG (P less then 0.05). find more Hypoxia enhanced cell cycle progression and DHAP partly restored cell cycle distribution toward the status of NG cells. Furthermore, CDK2 levels were markedly increased in hypoxic cells (P less then 0.05), while DHAP treatment starkly decreased CDK2 levels in comparison with the HG (P less then 0.05). Moreover, hypoxia increased intracellular [Ca2+] levels compared with normoxia (P less then 0.05); meanwhile, DHAP treatment decreased [Ca2+]i compared with the HG (P less then 0.05). These findings suggested that DHAP inhibits hypoxia-induced proliferation of HPASMCs involving [Ca2+]i reduction. Therefore, DHAP should be considered an ideal candidate for the prevention and/or treatment of hypoxia-associated pulmonary hypertension and pulmonary vascular remodeling.The present research study investigates the phytochemical and pharmacological importance of Bromus pectinatus. Qualitative phytochemical analysis of this plant was carried out to use standard method for the presence of various bioactive constituents. Results showed the ethanolic extract contain natural product such as steroids, alkaloids, tannins, coumarin, saponins, flavonoids and phenols. These compounds play a key role to reducing various disease and microbial inhibition. The ethanolic extract also showed the antimicrobial and antifugal activity against different pathogenic bacterial strains e.g Escherichia coli, Micrococus leutus, Protus vulgarus, and Kelebsela pneumona and three fungal strains Aspergillus fumigatus, Aspergillus flavous, Aspergillus niger. The antioxidant assay was performed as % inhibition of DPPH (1, 1-diphenyl-2-picryl-hydrazyl) free radicals. The plant extract has more antioxidant activity as compared to ascorbic acid. The maximum concentration (800µg/ml) is the most effective of all.
Read More: https://www.selleckchem.com/products/m344.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team