Notes
![]() ![]() Notes - notes.io |
To investigate the capabilities of several variance reduction techniques in the calculation of specific absorbed fractions in cases where the source and the target organs are far away and/or the target organs have a small volume.
The specific absorbed fractions have been calculated by using the Monte Carlo code PENELOPE and by assuming the thyroid gland as the source organ and the testicles, the urinary bladder, the uterus, and the ovaries as the target ones. A mathematical anthropomorphic phantom, similar to the MIRD-type phantoms, has been considered. Photons with initial energies of 50, 100 and 500 keV were emitted isotropically from the volume of the source organ. Simulations have been carried out by implementing the variance reduction techniques of splitting and Russian roulette at the source organ only and the interaction forcing at the target organs. The influence of the implementation details of those techniques have been investigated and optimal parameters have been determined. All simulations were run with a CPU time of 1.5·10
s.
Specific absorbed fractions with relative uncertainties well below 10% have been obtained in most cases, agreeing with those used as reference. The best value for the factor defining the application of the Russian roulette technique was r=0.3. The best value for the splitting number was between s=3 and s=10, depending on the specific energies and target organs.
The proposed strategy provides an effective method for computing specific absorbed fractions for the most unfavorable situations, with a computing effort that is considerably reduced with respect to other methodologies.
The proposed strategy provides an effective method for computing specific absorbed fractions for the most unfavorable situations, with a computing effort that is considerably reduced with respect to other methodologies.
The Integral Quality Monitor (IQM
) can essentially measure the integral fluence through a segment and provide real-time information about the accuracy of radiation delivery based on comparisons of measured segment signals and pre-calculated reference values. However, the present IQM chamber cannot calculate the dose in the patient.
This study aims to make use of IQM field output signals to calculate the number of monitor units (MUs) delivered through an arbitrary treatment field in order to convert Monte Carlo (MC)-generated dose distributions in a patient model into absolute dose.
XiO and Monaco treatment planning systems (TPSs) were used to define treatment beam portals for cervix and esophagus conformal radiotherapy as well as prostate intensity-modulated radiotherapy for the translation of patient and beam setup information from DICOM to DOSXYZnrc. The planned beams were simulated in a patient model built from actual patient CT images and each simulated integral field/segment was weighted with itsaccording to beam weighting. For XiO TPS, care must be taken as dose differences may also arise due to limitations in XiO's planning software, not merely due to differences in MUs. Overall, the IQM was successfully used to compute beam dose weights to accurately reconstruct the patient dose using unweighted MC beams. Our technique can be used for pre-treatment QA provided each segment output is known and an accurate linac source model is available.Studies on the effects of the pulse waveform used in electrical muscle stimulation on the activations and perceived discomfort of the waveform have been mainly executed on limb muscles with variable results, however, knowledge of these effects on facial muscles is currently lacking. find more We studied two waveforms, square wave and sinusoidal wavelet, for the activation of the frontalis muscle in 9 individuals with unresolved facial nerve palsy. Both waveforms produced a movement that was greater in amplitude compared with the maximal voluntary movement of the affected side in 8 participants and at least as great as the healthy side's maximal voluntary movement in 4 participants. Both waveforms were equally successful in producing movements, and there was no significant difference in perceived discomfort ratings between the two waveforms. These findings will be useful for the future development of neuroprosthetic applications for reanimating facial muscles using electrical stimulation. Trial registration ClinicalTrials.gov NCT03496025, registration date March 19, 2018.SAXS-CT is an emerging powerful imaging technique which bridges the gap between information retrieved from high-resolution local techniques and information from low-resolution, large field-of-view imaging, to determine the nanostructure characteristics of well-ordered tissues, e.g., mineralized collagen in bone. However, in the case of soft tissues, features such as poor nanostructural organization and high susceptibility to radiation-induced damage limit the use of SAXS-CT. Here, by combining the freeze-drying the specimen, preceded by formalin fixation, with the nanostructure survey we identified and monitored alterations on the hierarchical arrangement of triglycerides and collagen fibrils three-dimensionally in breast tumor specimens without requiring sample staining. A high density of aligned collagen was observed precisely on the invasion front of the breast carcinoma, showing the direction of cancer spread, whereas substantial content of triglycerides was identified, where the healthy tissue was located. Finally, the approach developed here provides a path to high-resolution nanostructural probing with a large field-of-view, which was demonstrated through the visualization of characteristic nanostructural arrangement and quantification of content and degree of organization of collagen fibrils in normal, benign and malignant human breast tissue.Bone injury, especially bone damages due to the removal of bone tumors, is one of the most important issues in the field of therapeutic research in tissue engineering applications. In this context, ceramic-based composites have attracted widespread attention since they have mechanical properties close to the natural bone, hence providing similar conditions for the extracellular matrix (ECM). Thus, in this study, hardystonite and diopside (HT-Di) scaffolds containing various diopside amounts from 5 to 25 wt% were prepared by the space holder method. The results revealed that the fabricated scaffolds contain 70%-75% porosity with a pore size of 300-500 μm and a compressive strength of about 0.54 to 1.71 MPa which is perfectly in the range of the compressive strength of the sponge bone. Noticeably, great apatite formation ability was observed in the scaffold with diopside, although the scaffold without diopside showed poor bioactivity. The MTT assay depicted that the inclusion of diopside into hardystonite scaffold resulted in dramatic enhancement in the MG-63 cell viability.
Homepage: https://www.selleckchem.com/products/jq1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team