Notes
![]() ![]() Notes - notes.io |
The results and recommendations from instrumental assessments of swallowing do not, by themselves, provide guidance regarding the type of medical management that might be needed for the pediatric patient with dysphagia. The aim of this study is to evaluate the reliability and validity of the Childhood Dysphagia Management Scale (CDMS), a clinical scale developed to estimate the impact of dysphagia and determine the need for a multidisciplinary medical home to manage dysphagia.
This was a prospective observational study implemented in three phases to evaluate validity and reliability of the CDMS. Analyses for internal consistency, inter-rater and intra-rater reliability, repeated measure, content, structural, criterion and external validity and hypothesis testing were conducted.
This study established content, structural, internal, external, and criterion validity of the CDMS. The CDMS was found to have robust inter-rater (κ=0.776) and intra-rater reliability (κ=0.853), and consistency across repeated measures (κ=0.853). Providers who used the CDMS had a high level of agreement with the recommended medical management plan. CDMS scores correlated (F(5,118)=22.105, p<0.001) with Functional Oral Intake Scale (FOIS) scores confirming that patients with significant diet restrictions were more likely to be referred for multidisciplinary care. To establish external validity, the CDMS was administered to a higher risk group, patients with Down syndrome, who were more likely to be referred for multidisciplinary care based on CDMS results versus the general swallowing disorders clinic population (F(1,281)=24.357, p<0.001).
The CDMS is a reliable and valid scale for guiding decision-making regarding the medical home for pediatric dysphagia management.
The CDMS is a reliable and valid scale for guiding decision-making regarding the medical home for pediatric dysphagia management.
Biallelic mutations in LOXHD1 have been identified as the cause of DFNB77 (deafness, autosomal recessive 77). It is a new progressive, severe-to-profound, and late-onset nonsyndromic sensorineural hearing loss (NSHL), and is highly heterogeneous genetically and phenotypically. This study aimed to provide an additional three cases of DFNB77.
We presented three unrelated children diagnosed with prelingual mild-to-severe NSHL, and their audiograms showed mild hearing loss at 250Hz before downsloping to a moderate-to-severe degree. Trio whole-exome sequencing (WES) was conducted to identify the pathogenic variants. Additionally, we reviewed the literature to further analyze the relationships between the genotype and audiology phenotype of LOXHD1.
Six novel possible pathogenic LOXHD1 variants were identified, including three missense, one nonsense, and two splicing variants. The literature review showed that 68.5% of patients with DFNB77 onset before five years old; Most variants (62%) were associated with aonsidering the genotype combination and mutation location of LOXHD1 and race-specificity in DFNB77 molecular diagnoses and management.The high-density polyethylene (HDPE) and the polystyrene (PS), which are typical microplastic contaminants, are frequently detected in the environment and have potential hazard to environmental health. In this study, the accumulation, elimination, tissue distribution and potential effects of the HDPE and the PS in the mussels (Mytilus galloprovincialis) were evaluated. The HDPE and the PS were found in various tissues (digestive gland > gill > gonad ≈ muscle) with no difference in distribution patterns. The accumulation of the HDPE and the PS rapidly increased in the first 48 h exposure, and the accumulation of HDPE was higher than that of PS. After 144 h of elimination, most of the HDPE and the PS were cleared by mussels. In addition, the activities of superoxide dismutase (SOD), catalase (CAT) and the content of oxidized glutathione considerably increased, indicating that the HDPE and the PS induced oxidative stress and prevented oxidative damage in elimination. The metabolomic analysis suggested that exposure to HDPE and PS induced alterations in the metabolic profiles of mussel. Samuraciclib mouse Differential metabolites were involved in energy metabolism, lipid metabolism, tricarboxylic acid cycle and neurotoxic response., and Meanwhile, the PS had a lower effect on mussel metabolism during elimination, but the effect of HDPE was increased. Overall, this study elucidated that the HDPE and the PS caused adverse effects on the mussels and provided insights toward understanding the hazard of different microplastics on aquatic organisms.Plankton organisms, biogenic particles, inorganic mineral particles, and microplastics are the four main components of particulate organic matter in aquatic ecosystems. We propose a new index, the Relative Microplastics Concentration (RMC, in %), considering that microplastics are more deleterious when food is scarce. A total of 112 plankton net samples were collected in estuarine, coastal and shelf environments of Tamandaré, Brazil. Particles were identified by image analysis (ZooScan) and FTIR. Higher concentrations of total microplastics, PP (Polypropylene) and PE (Polyethylene) in the estuary indicate an oceanward decreasing gradient from terrestrial sources. Higher concentrations of nylon fibres were found offshore. Yet, RMC indicated that the Bay had the most severely impacted ecosystems (RMC 2.4% in the estuary, 5.1% in the Bay, and 2.0% on the shelf), for total microplastics and PP & PE. Shelf ecosystems were most severely impacted with nylon fibres. RMC analysis provided a new perspective into the impact of microplastics on tropical coastal food webs.Biomaterials applied to the epicardium have been studied intensively in recent years for different therapeutic purposes. Their mechanical influence on the heart, however, has not been clearly identified. Most biomaterials for epicardial applications are manufactured as membranes or cardiac patches that have isotropic geometry, which is not well suited to myocardial wall motion. Myocardial wall motion during systole and diastole produces a complex force in different directions. Membrane or cardiac patches that cannot adapt to these specific directions will exert an inappropriate force on the heart, at the risk of overly restricting or dilating it. Accurately characterizing the mechanical properties of the myocardial wall is thus essential, through analysis of muscle orientation and elasticity. In this study, we investigated the Hertz contact theory for characterizing cardiac tissue, using nanoindentation measurements to distinguish different patterns in the local myocardium. We then evaluated the predictive accuracy of this model using Finite Element Analysis (FEA) to mimic the diastolic phase of the heart.
My Website: https://www.selleckchem.com/products/icec0942-hydrochloride.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team