Notes
![]() ![]() Notes - notes.io |
Cellular senescence is an irreversible growth arrest that occurs as a result of damaging stimuli, including DNA damage and/or telomere shortening. Here, we investigate histone variant H2A.J as a new biomarker to detect senescent cells during human skin aging. Skin biopsies from healthy volunteers of different ages (18-90 years) were analyzed for H2A.J expression and other parameters involved in triggering and/or maintaining cellular senescence. In the epidermis, the proportions of H2A.J-expressing keratinocytes increased from ≈20% in young to ≈60% in aged skin. Inverse correlations between Ki67- and H2A.J staining in germinative layers may reflect that H2A.J-expressing cells having lost their capacity to divide. As cellular senescence is triggered by DNA-damage signals, persistent 53BP1-foci, telomere lengths, and telomere-associated damage foci were analyzed in epidermal keratinocytes. Only slight age-related telomere attrition and few persistent nuclear 53BP1-foci, occasionally colocalizing with telomeres, suggest that unprotected telomeres are not a significant cause of senescence during skin aging. Quantification of integrin-α6+ basal cells suggests that the number and function of stem/progenitor cells decreased during aging and their altered proliferation capacities resulted in diminished tissue renewal with epidermal thinning. Collectively, our findings suggest that H2A.J is a sensitive marker of epidermal aging in human skin.Malaria continues to be a pressing global health issue, causing nearly half a million deaths per year. An effective malaria vaccine could radically improve our ability to control and eliminate this pathogen. The most advanced malaria vaccine, RTS,S, confers only 30% protective efficacy under field conditions, and hence the search continues for improved vaccines. click here New antigens and formulations are always first developed at a pre-clinical level. This paper describes the development of a platform to supplement existing tools of pre-clinical malaria vaccine development, by displaying linear peptides on a virus-like particle (VLP). Peptides from PfCSP, particularly from outside the normal target of neutralizing antibodies, the central NANP repeat region, are screened for evidence of protective efficacy. One peptide, recently identified as a target of potent neutralizing antibodies and lying at the junction between the N-terminal domain and the central repeat region of PfCSP, is found to confer protective efficacy against malaria sporozoite challenge in mice when presented on the Qβ VLP. The platform is also used to explore the effects of increasing numbers of NANP unit repeats, and including a universal CD4+ T-cell epitope from tetanus toxin, on immunogenicity and protective efficacy. The VLP-peptide platform is shown to be of use in screening malaria peptides for protective efficacy and answering basic vaccinology questions in a pre-clinical setting.Current influenza vaccines have a suboptimal effectiveness. The introduction of a novel A/H1N1 influenza virus in 2009 (H1N1pdm09) provided a unique opportunity to study the humoral response to the AS03-adjuvanted H1N1pdm09 vaccine and repeated annual vaccination with the homologous virus in subsequent influenza seasons. Thirty-two HCWs immunized with the AS03-adjuvanted H1N1pdm09 vaccine in 2009 were divided into four groups based on the longevity of their antibody responses (persistently high or transient), and whether they were repeatedly annually vaccinated in the subsequent four influenza seasons or not. Serological assays were utilized to measure the quantity, quality and functionality of antibodies targeting the major surface glycoprotein hemagglutinin (HA). Persistent high responders (hemagglutination inhibition (HI) titre ≥ 80 at 12 months after H1N1pdm09 vaccination) had protective levels of HI antibodies throughout the study period. In addition, the quality and functionality of these antibodies were greater than the individuals who had a transient antibody response to the pandemic vaccine (HI titre less then 40 at 12 months after H1N1pdm09 vaccination). All groups had similar levels of antibodies towards the conserved HA stalk domain. The level of HA head-specific antibodies gradually increased over time with annual vaccination in the transient responders. The AS03-adjuvanted H1N1pdm09 vaccine elicited a robust humoral response that persisted up to 5 years in some individuals. Seasonal annual vaccination boosted the HA-antibodies over time in individuals with a transient response to the pandemic H1N1pdm09 vaccine.We previously reported a basic algorithm to identify the risk of Parkinson's disease (PD) using published data on risk factors and prodromal features. Using this algorithm, the PREDICT-PD study identified individuals at increased risk of PD and used tapping speed, hyposmia and REM sleep behaviour disorder (RBD) as "intermediate" markers of prodromal PD in the absence of sufficient incident cases. We have now developed and tested an enhanced algorithm which incorporates the intermediate markers into the risk model. Risk estimates were compared using the enhanced and the basic algorithm in members of the PREDICT-PD pilot cohort. The enhanced PREDICT-PD algorithm yielded a much greater range of risk estimates than the basic algorithm (93-609-fold difference between the 10th and 90th centiles vs 10-13-fold respectively). There was a greater increase in the risk of PD with increasing risk scores for the enhanced algorithm than for the basic algorithm (hazard ratios per one standard deviation increase in log risk of 2.75 [95% CI 1.68-4.50; p less then 0.001] versus 1.47 [95% CI 0.86-2.51; p = 0.16] respectively). Estimates from the enhanced algorithm also correlated more closely with subclinical striatal DaT-SPECT dopamine depletion (R2 = 0.164, p = 0.005 vs R2 = 0.043, p = 0.17). Incorporating the previous intermediate markers of prodromal PD and using likelihood ratios improved the accuracy of the PREDICT-PD prediction algorithm.The hallmarks of COVID-19 are higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive immunological responses, induced by circulating human coronaviruses (hCoVs), is needed to understand such divergent clinical outcomes. Here we show analysis of coronavirus antibody responses of pre-pandemic healthy children (n = 89), adults (n = 98), elderly (n = 57), and COVID-19 patients (n = 50) by systems serology. Moderate levels of cross-reactive, but non-neutralizing, SARS-CoV-2 antibodies are detected in pre-pandemic healthy individuals. SARS-CoV-2 antigen-specific Fcγ receptor binding accurately distinguishes COVID-19 patients from healthy individuals, suggesting that SARS-CoV-2 infection induces qualitative changes to antibody Fc, enhancing Fcγ receptor engagement. Higher cross-reactive SARS-CoV-2 IgA and IgG are observed in healthy elderly, while healthy children display elevated SARS-CoV-2 IgM, suggesting that children have fewer hCoV exposures, resulting in less-experienced but more polyreactive humoral immunity.
Here's my website: https://www.selleckchem.com/products/ca77-1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team