Notes
![]() ![]() Notes - notes.io |
A method for predicting the solidification and stress of a digital light processing 3D print process is presented, using a voxel-based, multi-layer model to predict the degree of polymerization of the material at every stage during the print. Additive manufacturing offers extremely short development cycles, making predictive modelling of the complex chemical and mechanical interactions of photo-polymerization during part construction unappealing compared to iterative work-flows. Accurate predictions of stress, and the impact of the print parameters and post-print process upon stress, become increasingly important for 3D printing micro-scale electrical and mechanical systems as we design resonators and conductive layers. The process uses a simple method of printed cantilevers to calibrate the stress from various print processes such as propagation of the polymerization front and polymerization gradient. selleck chemicals The model is found to have good predictive value and is capable of stress and solidification prediction from a computer aided design file.A chemo- and regioselective Pd(0)-catalyzed spiroannulation has been successfully developed. The key feature of this method is the use of readily available 1,2-dihaloarenes, alkynes and 2-naphthols for the rapid assembly of spirocarbocyclic molecules. Mechanistic studies revealed that this domino reaction proceeded through a cascade of oxidative addition to Pd(0), alkyne migratory insertion, and 2-naphthol-facilitated dearomatizing [4+1] spiroannulation.Meat protein gels are present in a variety of foods and are frequently filled with fat particles. This study set out to elucidate the effect of replacing hydrophobic fat-based particles with hydrophilic inert glass particles on thermal and structural properties during heating. Meat protein gels were prepared with different diameters (60 to 90 mm) according to a typical emulsified sausage recipe and fat-based particles as well as inert glass particles were incorporated at concentrations from 10 to 40% and heated to 85 °C, while thermal as well as structural properties were monitored. The results revealed two main effects. First, due to the higher thermal conductivity, the lower heat capacity and the absence of extensive phase transitions, the time to reach the final temperature was reduced with increasing glass particle content (e.g. from 118 ± 2 min with 40% fat particles to 86 ± 1 min for gels with 40% glass particles at a depth of 40 mm). Second, volume change and temperature sweep measurements revealed that glass particles fostered the protein gel formation and enhanced the resilience against structural breakdown during heating. This was evident during small-amplitude shear experiments that showed an almost twofold increase in the storage modulus when 10% fat-based particles were replaced with 10% glass particles from G'85 °C = 223.4 ± 14.8 kPa to G'85 °C = 431.0 ± 16.6 kPa, respectively. Overall, these findings might be of interest to meat-product manufacturers that seek to lower heating times to reach the core temperature necessary for protein denaturation and ensure microbial safety with additional holding times and modify the structural properties of foods while replacing fat particles.The analysis and detection of ultra-trace biomarkers are often carried out in microliter droplets. Common stirring approaches have some difficulties in precise and contactless mixing and dispersion in microdroplets. In this work, an open mini-pillar-based platform that integrates with ultrasound units is developed to achieve contactless mixing and dispersion in microliter samples. On such a platform, mini-pillars can anchor microdroplets as individual microreactors, and each ultrasound unit can be remotely controlled to achieve on-demand contactless micro-stirring, which is also confirmed by mixing and dispersing of Fe3O4 nanoparticles (1 μm) in microdroplets (10 μL). Such on-demand high-throughput mixing and dispersion that integrates ultrasound mixing with microdroplet technology provides a potential robot-based platform for achieving high-throughput and ultra-trace biosensing in microliter droplets.Two fragments of the COVID-19 genome (specific and homologous) were used as two inputs to construct an AND logic gate for COVID-19 detection based on exonuclease III and DNAzyme. The detection sensitivity of the assay can reach fM levels. Satisfactory recovery values were obtained in real sample analysis.Covering up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Homepage: https://www.selleckchem.com/
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team