Notes
![]() ![]() Notes - notes.io |
The algae biological pump (ABP) effect for hydrophobic organic contaminants in deep oligotrophic lakes and oceans has been well studied. Suspended particulate matter (SPM) plays a connective role in ABP processes. However, little is known about the impacts of ABP effect on the occurrence, source apportionment and toxicity of SPM-bound polycyclic aromatic hydrocarbons (PAHs) in a typically shallow eutrophic lake under strong anthropogenic emissions of PAHs. In this study, we study this gap knowledge on the eutrophic Lake Chaohu, China. SPM-bound PAHs in Lake Chaohu were controlled by anthropogenic emissions in all seasons. Apparent ABP effect only occurred in spring and summer in lake area. Algae blooms in spring and summer significantly increased 46.5% ± 7.9% (mean ± standard deviation) and 19.8% ± 2.4% of Σ21 SPM-bound PAHs, and greatly enhanced their toxicity (1.98 ± 0.46 times in spring and 32.9% ± 4.2% in summer). Therefore, there need more attentions focusing on the coupling effect of persistent toxic substances such as PAHs and harmful algae blooms in aquatic environment for sustainable development. The apparent ABP effect had little influence on their source apportionment. However, it may cause a regime shift for the source apportionment on a short-term scale. Further study could pay more attentions on in-depth and short-term studies on ABP effect.Phyllospheric microbes play a crucial role in the biological decomposition of plant litter in wetland ecosystems. Previous studies have mainly focused on single stages of decomposition process, and to date there have been no reports on dynamic changes in the composition of phyllospheric microbes during the multiple stages of decomposition from living plant to death. Here we investigated fungal and bacterial community succession in the leaf litter of Schoenoplectus tabernaemontani, a wetland plant species using sequencing of the both fungal ITS and bacterial 16S genes. Our results revealed that, over the whole period of decomposition, the fungal communities underwent more distinct succession than did the bacterial communities. Proteobacteria dominated throughout the entire period, while, across different decomposition stages, the Ascomycete fungi were gradually replaced by the Ciliophora and Rozellomycota as the dominant fungi. Network analysis revealed higher degrees of species segregation and shorter average path lengths between species of fungi compared with species of bacteria. This suggests that fungal communities may harbor more niches and functional diversity and are potentially more susceptible to external interference than are bacterial communities. During decomposition, the contents of leaf cellulose, hemicellulose and lignin in the litter were significantly (p less then 0.01) correlated with the fungal communities, and abiotic factors accounted for 89.8% of the total variation in the fungal communities. Guanosine 5'-triphosphate research buy In contract, abiotic factors only explained 6.10% of the total variation in bacterial communities, suggesting external environments as drivers of fungal community succession. Overall, we provide evidence that the complex litter decay in wetlands is the result of a dynamic cross-kingdom succession, and this process is accompanied by distinct phyllospheric fungal community dynamics.Urban pollution and hydrological stress are common stressors of stream ecosystems, but their combined effects on ecosystem functioning are still unclear. We measured a set of functional processes and accompanying environmental variables in locations upstream and downstream of urban sewage inputs in 13 streams covering a wide range of water pollution levels and hydrological variability. Sewage inputs seriously impaired stream chemical characteristics and led to complex effects on ecosystem functioning. Biofilm biomass accrual, whole-reach nutrient uptake and metabolism (ecosystem respiration) were generally subsidized, whereas organic matter decomposition and biofilm phosphorus uptake capacity decreased with increasing pollutant concentrations. Hydrological stress affected stream ecosystem functioning but its effect was minor compared to the effects of urban pollution, due to the large inter-site variability of the streams. Changes appeared mainly linked to the concentration of pharmaceutically active compounds, followed by other chemical characteristics and by hydrology. The results point to the need to further improve sewage treatment, especially as climate change will stress riverine organisms and reduce the dilution capacity of the receiving streams.One important route of degradation of herbicide pendimethalin in soil leads to formation of non-extractable residues (NER). To investigate NER nature (irreversibly, chemically bound, including possible biogenic NER, or strongly sorbed and entrapped) residues of 14C-labelled pendimethalin in soil were investigated after conventional extraction with organic solvents by silylation. After 400 days of incubation, 32.0% of applied radioactivity (AR) was transformed into NER, 39.9% AR remained extractable. Mineralization reached 26.2% AR. Additionally, 14C-pendimethalin was incubated in soil amended with compost for 217 days to investigate the influence of organic amendments on NER formation. NER amounted to 37.8% AR, with 57.9% AR remaining extractable. Mineralization was negligible (1.4% AR). For all sampling times only low amounts of radioactivity were entrapped ( less then 5% AR) in soil without compost amendment. Pendimethalin was present only in trace amounts (ca. 0.4% AR), other released residues consisted of undefined fractions (sum ≈2% AR). In soil amended with compost, silylation overall resulted in release of higher amounts of radioactivity (19% AR). Addition of compost led to an increase in potential entrapment and sorption sites for pendimethalin, forming higher amounts of strongly sorbed, entrapped residues. Furthermore, potential release of non-extractable pendimethalin residues was investigated by incubation of solvent-extracted soil (without compost amendment) mixed with fresh soil for additional 3 months. NER were partly mineralized (7% AR) and 20% became extractable with organic solvents. However, no pendimethalin or any known metabolites were found. It can be concluded that no parent pendimethalin was found and NER of pendimethalin in soil are mainly formed by covalent binding to organic matrix with only low potential of remobilization under natural conditions.
My Website: https://www.selleckchem.com/products/guanosine-5-triphosphate-trisodium-salt.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team