Notes
![]() ![]() Notes - notes.io |
Vitamin C plays a protective role in oxidative damage by blocking the effects of free radicals. The present study investigated the mechanisms through which vitamin C partly mediates anti‑apoptotic and antioxidant functions via the regulation of microRNAs (miRNAs or miRs). For this purpose, a global miRNA expression analysis on human umbilical vein endothelial cells (HUVECs) treated with vitamin C was conducted using microarrays containing human precursor and mature miRNA probes. The results revealed that there were 42 identical miRNAs among the differentially expressed miRNAs in the HUVEC group and H2O2 + vitamin C‑treated HUVEC group compared to the H2O2‑exposed HUVEC group, including 41 upregulated miRNAs and 1 down‑regulated miRNA. Using bioinformatics analysis, differentially expressed miRNAs were investigated to identify novel target mRNAs and signaling pathways. Pathway enrichment analyses revealed that apoptosis, the mitogen‑activated protein kinase (MAPK) signaling pathway, phosphoinositide 3‑kinase (PI3K)/Akt signaling pathway and oxidative phosphorylation were significantly enriched. The results from western blot analysis demonstrated that the interleukin (IL)10, matrix metalloproteinase (MMP)2, cAMP‑response element binding protein (CREB) and p‑CREB protein expression levels in HUVECs transfected with hsa‑miR‑3928‑5p and induced by H2O2 were significantly downregulated; the MAPK9, caspase‑3 (CASP3) and p‑CASP3 protein expression levels in HUVECs transfected with hsa‑miR‑323a‑5p and induced by H2O2 were significantly downregulated. The present study therefore demonstrates that vitamin C partly exerts protective effects on HUVECs through the regulation of miRNA/mRNA axis expression.Breast cancer (BRCA) is one of the most common malignancies encountered in women worldwide. Lipid metabolism has been found to be involved in cancer progression. Steroidogenic acute regulatory protein‑related lipid transfer 4 (STARD4) is an important cholesterol transporter involved in the regulatory mechanism of intracellular cholesterol homeostasis. However, to the best of our knowledge, the molecular functions of STARD4 in BRCA are unclear. Immunohistochemical staining and public dataset analysis were performed to investigate the expression levels of STARD4 in BRCA. In the present study, high expression of STARD4 was identified in BRCA samples and higher STARD4 expression was significantly associated with shorter distant metastasis‑free survival time in patients with BRCA, which indicated that STARD4 may be associated with BRCA progression. Cell cytometry system Celigo® analysis, Cell Counting K‑8 assays, flow cytometry, wound healing assays and transwell assays were used to investigate the effects of STARD4 knockdown on proliferation, cell cycle, apoptosis and migration in BRCA cells. Loss‑of‑function assays demonstrated that STARD4 acted as an oncogene to promote proliferation and cell cycle progression, while suppressing apoptosis in BRCA cells in vitro and in vivo. Furthermore, knockdown of STARD4 significantly suppressed BRCA metastasis. To assess the mechanism of action of STARD4, microarray analysis was performed following STARD4 knockdown in MDA‑MB‑231 cells. The data were analyzed in detail using bioinformatics, and a series of genes, including E74 like ETS transcription factor 1, cAMP responsive element binding protein 1 and p21 (RAC1) activated kinase 2, which have been previously reported to be crucial genes implicated in the malignant phenotype of cancer cells, were identified to be regulated by STARD4. Loss‑of function assays demonstrated that knockdown of STARD4 suppressed BRCA proliferation and migration. These findings suggested that STARD4 had an oncogenic effect in human BRCA progression.The roles of the Hippo‑Yes‑associated protein (YAP) pathway in lung injury and repair remain elusive. The present study examined the effects of systemic inhibition or stimulation of YAP activity on lung injury, repair and inflammation in a mouse model of lipopolysaccharide (LPS)‑induced lung injury. Mice were treated with or without YAP inhibitor, verteporfin, or with or without YAP stimulator, XMU‑MP‑1, and intraperitoneally injected with LPS (7.5 mg/kg). Lung injury and repair were evaluated by histological analysis and by testing for markers of lung injury. Lung inflammation was assessed by measuring tissue levels of inflammatory mediators. Lung injury was associated with a decreased, whereas lung repair was associated with an increased YAP activity evidenced by nuclear translocation. Lung injury was associated with a high level of lung inflammation and epithelial adherens junction disassembly, but not with cell proliferation or epithelial cell regeneration. Recilisib The injury phase was defined as 0‑48 h post‑LPS tivity alleviated lung inflammation and injury at the injury phase and promoted inflammation resolution and lung repair at the repair phase.Various studies have revealed that the Hedgehog (Hh) signaling pathway promotes ovarian cancer invasion, migration and drug resistance. Previous studies by our group have identified a set of genes, including multidrug resistance gene 1 (MDR1), that are regulated by Hh signaling in ovarian cancer. However, the association between Hh signaling activation and MDR1 expression requires further validation. In the present study, reverse transcription‑quantitative PCR or western blot assays were used to evaluate the mRNA and protein expression levels of MDR1, Sonic Hh (Shh), glioma‑associated oncogene 2 (Gli2), Gli1 and γ‑phosphorylated H2A.X variant histone (γ‑H2AX). MTT and colony‑formation assays were performed to determine the effect of cisplatin (DDP) after inhibiting the Hh pathway in ovarian cancer cells. The results indicated that MDR1, Gli2 and Shh levels were much higher in SK‑OV‑3 cells with acquired DDP resistance than in native SK‑OV‑3 cells. ES‑2 cells with overexpression of Gli2 were capable of efficiently forming colonies in the presence of low DDP concentrations. By contrast, Gli2 knockdown in SK‑OV‑3 cells decreased the colony‑forming ability under the same concentration of DDP. As determined by MTT assays, knockdown of Gli2 or targeting of the Hh signaling pathway with either Gli‑antagonist 61 (GANT61) or cyclopamine, in combination with DDP treatment, diminished the viability of ES‑2 and SK‑OV‑3 cells, whereas Gli2 overexpression increased the viability of ES‑2 cells in the presence of DDP. Knockdown of Gli2 or targeting the Hh signaling pathway with GANT61 also increased γ‑H2AX levels but decreased the expression of MDR1 in the presence of DDP. MDR1 expression is regulated by the Hh signaling pathway and is likely a downstream transcription factor of Gli2. In conclusion, targeting the Hh signaling pathway increases the sensitivity of ovarian cancer to DDP. MDR1 is a target gene of the Hh signaling pathway and this pathway may affect chemoresistance of ovarian cancer to DDP via MDR1.
Homepage: https://www.selleckchem.com/products/recilisib.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team