Notes
![]() ![]() Notes - notes.io |
This paper proposes a low complexity multiple-signal-classifier (MUSIC)-based direction-of-arrival (DOA) detection algorithm for frequency-modulated continuous-wave (FMCW) vital radars. In order to reduce redundant complexity, the proposed algorithm employs characteristics of distance between adjacent arrays having trade-offs between field of view (FOV) and resolution performance. First, the proposed algorithm performs coarse DOA estimation using fast Fourier transform. On the basis of the coarse DOA estimation, the number of channels as input of the MUSIC algorithm are selected. If the estimated DOA is smaller than 30°, it implies that there is an FOV margin. Therefore, the proposed algorithm employs only half of the channels, that is, it is the same as doubling the spacing between arrays. selleckchem By doing so, the proposed algorithm achieves more than 40% complexity reduction compared to the conventional MUSIC algorithm while achieving similar performance. By experiments, it is shown that the proposed algorithm despite the low complexity is enable to distinguish the adjacent DOA in a practical environment.The expansion of adipose tissue mass is the primary characteristic of the process of becoming obesity, which causes chronic adipose inflammation and is closely associated with type 2 diabetes mellitus (T2DM). Adipocyte hypertrophy restricts oxygen availability, leading to microenvironmental hypoxia and adipose dysfunction. This study aimed at investigating the effects of oxygenated water (OW) on adipocyte differentiation (adipogenesis) and the metabolic function of mature adipocytes. The effects of OW on adipogenesis and the metabolic function of mature adipocytes were examined. Meanwhile, the in vivo metabolic effects of long-term OW consumption on diet-induced obesity (DIO) mice were investigated. OW inhibited adipogenesis and lipid accumulation through down-regulating critical adipogenic transcription factors and lipogenic enzymes. While body weight, blood and adipose parameters were not significantly improved by long-term OW consumption, transient circulatory triglyceride-lowering and glucose tolerance-improving effects were identified. Notably, hepatic lipid contents were significantly reduced, indicating that the DIO-induced hepatic steatosis was attenuated, despite no improvements in fibrosis and lipid contents in adipose tissue being observed in the OW-drinking DIO mice. The study provides evidence regarding OW's effects on adipogenesis and mature adipocytes, and the corresponding molecular mechanisms. OW exhibits transient triglyceride-lowering and glucose tolerance-improving activity as well as hepatic steatosis-attenuating functions.The relatively high levels of vegetable consumption have highlighted the need to examine the association between phytochemical intake and disease prevention. We examined the association between the phytochemical index (PI) and obesity/abdominal obesity among Korean adults. We analyzed the data of 57,940 adults aged ≥ 19 years obtained from the Korea National Health and Nutrition Examination Survey. We calculated PI using the 24 h recall data, and multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression models. Dose-response patterns were analyzed using restricted cubic spline regression. After multivariable adjustment, a higher PI was found to be associated with a lower prevalence of obesity and abdominal obesity; this association was notable in women (obesity, OR 0.86, CI 0.78-0.94, p for trend = 0.01; abdominal obesity, OR 0.81, CI 0.73-0.90, p for trend less then 0.001). Spline regression showed linearity of the associations between PI and obesity/abdominal obesity in women. Our findings suggested that maintaining a phytochemical-rich diet may help to prevent obesity and abdominal obesity, especially in women, as an increased PI corresponded to lower prevalence of obesity. This study, using evidence-based data, highlighted the importance of consuming plant-derived foods to prevent obesity.Many studies have shown a global efficacy of laparoscopic surgery for patients with endometriosis in reducing painful symptoms and improving quality of life (QoL) in the short and long-term. The aim of this study was to analyze the different trajectories of long-term evolution in QoL and symptoms following surgical treatment for endometriosis, and to identify corresponding patient profiles. This prospective and multicenter cohort study concerned 962 patients who underwent laparoscopic treatment for endometriosis. QoL was evaluated using the Short Form (SF)-36 questionnaire and intensity of pain was reported using a visual analog scale prior to surgery and at 6, 12, 18, 24 and 36 months after surgery. Distinctive trajectories of pain and QoL evolution were identified using group-based trajectory modeling, an approach which gathers individuals into meaningful subgroups with statistically similar trajectories. Pelvic symptom trajectories (models of the evolution of dysmenorrhea, dyspareunia and chronic pelvic pain intensity over years) correspond to (1) patients with no pain or pain no longer after surgery, (2) patients with the biggest improvement in pain and (3) patients with continued severe pain after surgery. Our study reveals clear trajectories for the progression of symptoms and QoL after surgery that correspond to clusters of patients. This information may serve to complete information obtained from epidemiological methods currently used in selecting patients eligible for surgery.Antiviral polymers are part of a major campaign led by the scientific community in recent years. Facing this most demanding of campaigns, two main approaches have been undertaken by scientists. First, the classic approach involves the development of relatively small molecules having antiviral properties to serve as drugs. The other approach involves searching for polymers with antiviral properties to be used as prescription medications or viral spread prevention measures. This second approach took two distinct directions. The first, using polymers as antiviral drug-delivery systems, taking advantage of their biodegradable properties. The second, using polymers with antiviral properties for on-contact virus elimination, which will be the focus of this review. Anti-viral polymers are obtained by either the addition of small antiviral molecules (such as metal ions) to obtain ion-containing polymers with antiviral properties or the use of polymers composed of an organic backbone and electrically charged moieties like polyanions, such as carboxylate containing polymers, or polycations such as quaternary ammonium containing polymers.
Website: https://www.selleckchem.com/products/bay-2666605.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team