Notes
![]() ![]() Notes - notes.io |
Puncture tests showed that posterior scutes were weaker than both anterior and middle scutes, and scutes attached to the body required 50% more energy to puncture than isolated scutes. Corydoras trilineatus has the strongest armor in areas critical for protecting vital organs and the external armored scute receives synergistic benefits from interactions to the soft underlying tissue, which combine to provide a tough protective armor that still allows for flexible mobility.Development of multifunctional tube-filling materials is required to improve the performances of the existing nerve guidance conduits (NGCs) in the repair of long-gap peripheral nerve (PN) injuries. In this study, composite nanofiber yarns (NYs) based on poly(p-dioxanone) (PPDO) biopolymer and different concentrations of carbon nanotubes (CNTs) were manufactured by utilizing a modified electrospinning apparatus. We confirmed the successful incorporation of CNTs into the PPDO nanofibers of as-fabricated composite NYs. The PPDO/CNT NYs exhibited similar morphology and structure in comparison with pure PPDO NYs. However, the PPDO/CNT NYs showed obviously enhanced mechanical properties and electrical conductivity compared to PPDO NYs. The biological tests revealed that the addition of CNTs had no negative effects on the cell growth, and proliferation of rabbit Schwann cells (rSCs), but it better maintained the phenotype of rSCs. We also demonstrated that the electrical stimulation (ES) significantly enhanced the differentiation capability of human adipose-derived mesenchymal stem cells (hADMSCs) into SC-like cells (SCLCs) on the PPDO/CNT NYs. More importantly, a unique combination of ES and chemical induction was found to further enhance the maturation of hADMSC-SCLCs on the PPDO/CNT NYs by notably upregulating the expression levels of SC myelination-associated gene markers and increasing the growth factor secretion. Overall, this study showed that our electrically conductive PPDO/CNT composite NYs could provide a beneficial microenvironment for various cell activities, making them an attractive candidate as NGC-infilling substrates for PN regeneration applications.Modular tissue engineering is a promising biofabrication strategy to create engineered bone grafts in a bottom-up manner, in which cell-laden micro-modules are prepared as basic building blocks to assemble macroscopic tissues via different integrating mechanisms. In this study, we prepared collagen microbeads loaded with human bone marrow derived mesenchymal stem cells (BMSCs) using a microfluidic approach. The cell-laden microbeads were characterized for size change, cell activity, osteogenesis, as well as their self-assembly properties to generate centimeter-sized constructs. Moreover, using the cell-laden beads as a supporting medium, induced pluripotent stem cell-derived endothelial cells (iPSC-EC) were patterned inside bead aggregates through extrusion-based 3D printing. This fabrication approach that combines modular tissue engineering and supports 3D printing has the potential to create 3D engineered bone grafts with a pre-existing, customized vasculature.Silicones (i.e. crosslinked poly(dimethylsiloxane), PDMS) are commonly used material for microfluidic device fabrication. Nonetheless, due to the uncontrollable absorption of small hydrophobic molecules ( less then 1 kDa) into the bulk, its applicability to cell-based drug assays and sensing applications has been limited. Here, we demonstrate the use of substrates made of silicones bulk modified with a poly(ethylene oxide) silane amphiphile (PEO-SA) to reduce hydrophobic small molecule sequestration for cell-based assays. Modified silicone substrates were generated with concentrations of 2 wt.%, 9 wt.% and, 14 wt.% PEO-SA. mTOR inhibitor drugs Incorporation of PEO-SA into the silicone bulk was assessed by FTIR analysis in addition to water contact angle analysis to evaluate surface hydrophobicity. Cell toxicity, absorption of small hydrophobic drugs, and cell response to hydrophobic molecules were also evaluated. Results showed that the incorporation of the PEO-SA into the silicone led to a reduction in water contact angle from 114° to as low as 16° that was stable for at least three months. The modified silicones showed viability values above 85% for NIH-3T3, MCF7, MDA-MB-468, and MDA-MB-231 cell lines. A drug response assay using tamoxifen and the MCF7 cell line showed full recovery of cell toxicity response when exposed to PDMS modified with 9 wt.% or 14 wt.% PEO-SA compared to tissue culture plastic. Therefore, our study supports the use of PEO-SA at concentrations of 9 wt.% or higher for enhanced surface wettability and reduced absorption of small hydrophobic molecules in PDMS-based platforms.For the past 20 years, the democratization of additive manufacturing (AM) technologies has made many of us dream of low cost, waste-free, and on-demand production of functional parts; fully customized tools; designs limited by imagination only, etc. As every patient is unique, the potential of AM for the medical field is thought to be considerable AM would allow the division of dedicated patient-specific healthcare solutions entirely adapted to the patients' clinical needs. Pertinently, this review offers an extensive overview of bone-related clinical applications of AM and ongoing research trends, from 3D anatomical models for patient and student education to ephemeral structures supporting and promoting bone regeneration. Today, AM has undoubtably improved patient care and should facilitate many more improvements in the near future. However, despite extensive research, AM-based strategies for bone regeneration remain the only bone-related field without compelling clinical proof of concept to date. This may be due to a lack of understanding of the biological mechanisms guiding and promoting bone formation and due to the traditional top-down strategies devised to solve clinical issues. Indeed, the integrated holistic approach recommended for the design of regenerative systems (i.e., fixation systems and scaffolds) has remained at the conceptual state. Challenged by these issues, a slower but incremental research dynamic has occurred for the last few years, and recent progress suggests notable improvement in the years to come, with in view the development of safe, robust and standardized patient-specific clinical solutions for the regeneration of large bone defects.
My Website: https://www.selleckchem.com/mTOR.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team