Notes
![]() ![]() Notes - notes.io |
Six types of circular business models are identified and discussed biogas plant, upcycling entrepreneurship, environmental biorefinery, agricultural cooperative, agropark and support structure. They differ in their way of value creation and organisational form, but strongly depend on partnerships and their capacity to respond to changing external conditions. This study offers the first circular business model typology within the agricultural domain, revealing the interconnectedness of the six different business model types. It provides options for managers in positioning and adapting their business strategies. It highlights the potential of using biomass first for higher added-value products before exploiting it as energy source. Cascading biomass valorisation at a territorial level will increasingly be important for locally cooperating actors within a circular bioeconomy approach. The application of direct mass spectrometry techniques to the analysis of complex samples has a number of advantages including reduced sample handling, higher sample throughput, in situ process monitoring, and the potential for adaptation to on-site analysis. We report the application of a semi-permeable capillary hollow fibre membrane probe (immersed directly into an aqueous sample) coupled to a triple quadrupole mass spectrometer by a continuously flowing methanol acceptor phase for the rapid analysis of naphthenic acids with unit mass resolution. selleck chemicals The intensity of the naphthenic acid-associated peaks in the mass spectrum are normalized to an internal standard in the acceptor phase for quantitation and the relative abundance of the peaks in the mass spectrum are employed to monitor compositional changes in the naphthenic acid mixture using principle component analysis. We demonstrate the direct analysis of a synthetic oil sands process-affected water for classical naphthenic acids (CnH2n+zO2) as they are attenuated through constructed wetlands containing sedge (Carex aquatilis), cattail (Typha latifolia), or bulrush (Schoenoplectus acutus). Quantitative results for on-line membrane sampling compare favourably to those obtained by solid-phase extraction high-resolution mass spectrometry. Additionally, chemometric analysis of the mass spectra indicates a clear discrimination between naphthenic acid-influenced and natural background waters. Furthermore, the compositional changes within complex naphthenic acid mixtures track closely with the degree of attenuation. Overall, the technique is successful in following changes in both the concentration and composition of naphthenic acids from synthetic oil sands process-affected waters, with the potential for high throughput screening and environmental forensics. V.Drinking water reservoir is threatened globally due to anthropogenic contamination and thus in need of more attention. Here, we comprehensively investigated the occurrence, distribution and risk assessment of representative antibiotics in a large drinking water reservoir (Fengshuba Reservoir, China). The total concentrations of antibiotics in the water phase, porewater phase, sediment phase and soil phase (drawdown area) were in the ranges of 195-569 ng/L, 47.1-333 ng/L, 114-272 μg/kg and 2.84-77.2 μg/kg, respectively. The dominant antibiotic was CIP in both the water and porewater phases, while it was OTC in the sediment phase. For the water phase, seasonal factor consisting hydrologic condition and pattern of antibiotic use could influence the occurrence level and environmental fate of antibiotics. In contrast, exogenous particles derived from the soils that had used manures during the spring planting season coupled with heavy rainfall was responsible for the occurrence level and composition of antibiotics in the sediment phase. Moreover, Chl-α, NO3-, TP and EC were the most dominant factor influencing the antibiotic distributions in the water phase, porewater phase, sediment phase and soil phase, respectively. Pseudo-partitioning coefficients indicated that PENV and PENG might accumulate more easily into the sediments from the aqueous phase compared with other antibiotics. Risk assessments suggested that TC might pose high risks to the aquatic ecosystem, but the antibiotics presented no risk to the health of consumers. Generally, TC could be used as a promising indicator for evaluating the occurrence and potential risk of antibiotics in Fengshuba Reservoir. V.Arbuscular mycorrhizal fungi (AMF) have been widely reported to occur in the association with wetland plants. However, the factors that affect AMF colonization in wetland plants and physiological functions in AMF inoculated wetland plants are poorly studied. This study investigated the effects of four water regimes (below the surface of sands water levels of 5 cm, 9 cm, 11 cm, and fluctuating water depth (9-11 cm)) on AMF root colonization in two wetland plants (Phalaris arundinacea and Scirpus sylvaticus) which are commonly used in constructed wetland. Results showed that two lower water regimes were the most suitable for the formation of root colonization by AMF. Plant species did not show any significant difference in AMF colonization. The AMF colonization of 15.6-23.3% in the roots of both wetland plants were determined under the water regimes of 11 cm and 9-11 cm. In comparison to the non-inoculated plants, root length, shoot height, biomass, shoot total phosphorus and chlorophyll contents of both wetland plants under the fluctuating water regimes (9-11 cm) were increased by 35.4-46.2%, 13.1-26.6%, 33.3-114.3%, 25.7-80% and 14.3-24%, respectively. Although malondialdehyde (MDA) contents in both AMF inoculated wetland plants were decreased under the lower water levels, the MDA contents under the water regime of 11 cm were still high. Therefore, these results indicated that the physiological functions in wetland plants with high AMF colonization might be improved under a specific water regime condition (e.g. depth of fluctuating water regime). Exposure to fine particulate matter (PM2.5) is associated with cardiovascular disease risk. To date, there are few studies on short-term PM2.5 exposure in different microenvironments and its impact on immediate health effects, particularly in the Southeast Asia region. This study assessed PM2.5 concentrations in different microenvironments in a densely populated city in the tropics using low-cost personal PM2.5 sensors as well as their associations with acute cardiovascular health outcomes. A total of 49 adult participants affiliated with the National University of Singapore (NUS) community were recruited. Personal low-cost sensors were used to measure PM2.5 concentrations between September 2017 and March 2019. Demographic information and time-activity patterns were collected using questionnaires. Wilcoxon pairwise comparisons were used to determine statistical differences between PM2.5 exposures at 18 different microenvironments. Generalized Estimating Equations (GEE) models were used to assess the association between PM2.
My Website: https://www.selleckchem.com/products/dsp5336.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team