Notes
![]() ![]() Notes - notes.io |
Polycrystals are partially ordered solids where crystalline order extends over mesoscopic length scales, namely, the grain size. We study the Poisuielle flow of such materials in a rough channel. In general, similar to yield stress fluids, three distinct dynamical states, namely, flowing, stick-slip, and jammed can be observed, with a yield threshold dependent on channel width. Importantly, the interplay between the finite channel width, and the intrinsic ordering scale (the grain size) leads to a new type of spatiotemporal heterogeneity. In wide channels, although the average flow profile remains pluglike, at the underlying granular level, there is vigorous grain remodeling activity resulting from the velocity heterogeneity among the grains. As the channel width approaches typical grain size, the flowing polycrystalline state breaks up into a spatially heterogeneous mixture of flowing liquid like patches and chunks of nearly static grains. Despite these static grains, the average velocity still shows a parabolic profile, dominated by the moving liquidlike patches. However, the solid-liquid front moves at nearly constant speed in the opposite direction of the external drive.We present an experimental and theoretical study of the phonon mode in a unitary Fermi gas. Using two-photon Bragg spectroscopy, we measure excitation spectra at a momentum of approximately half the Fermi momentum, both above and below the superfluid critical temperature T_c. Below T_c, the dominant excitation is the Bogoliubov-Anderson (BA) phonon mode, driven by gradients in the phase of the superfluid order parameter. The temperature dependence of the BA phonon is consistent with a theoretical model based on the quasiparticle random phase approximation in which the dominant damping mechanism is via collisions with thermally excited quasiparticles. As the temperature is increased above T_c, the phonon evolves into a strongly damped collisional mode, accompanied by an abrupt increase in spectral width. Our study reveals strong similarities between sound propagation in the unitary Fermi gas and bosonic liquid helium.We derive the general analytical solution of the viscous hydrodynamic equations for an ultrarelativistic gas of hard spheres undergoing Bjorken expansion, taking into account effects from particle number conservation, and use it to analytically determine its attractor at late times. Differently than all the cases considered before involving rapidly expanding fluids, in this example the gradient expansion converges. We exactly determine the hydrodynamic attractor of this system when its microscopic dynamics is modeled by the Boltzmann equation with a fully nonlinear collision kernel. The exact late time attractor of this system can be reasonably described by hydrodynamics even when the gradients are large.High harmonic generation in crystalline solids has been examined so far on the basis of one-body energy-band structures arising from electron itineracy in a periodic potential. Here, we show the emergence of high harmonic generation signals which are attributed to the dynamics of many-body states in a low-dimensional correlated electron system. Fumarate hydratase-IN-1 An interacting fermion model and its effective pseudospin model on a one-dimensional dimer-type lattice are analyzed. Observed high harmonic generation signals in a spontaneously symmetry-broken state, where charge densities are polarized inside of dimer units, show threshold behavior with respect to light amplitude and are interpreted in terms of tunneling and recombination of kink-antikink excitations in an electric field.We discover hidden Rashba fine structure in CH_3NH_3PbI_3 and demonstrate its quantum control by vibrational coherence through symmetry-selective vibronic (electron-phonon) coupling. Above a critical threshold of a single-cycle terahertz pump field, a Raman phonon mode distinctly modulates the middle excitonic states with persistent coherence for more than ten times longer than the ones on two sides that predominately couple to infrared phonons. These vibronic quantum beats, together with first-principles modeling of phonon periodically modulated Rashba parameters, identify a threefold excitonic fine structure splitting, i.e., optically forbidden, degenerate dark states in between two bright ones with a narrow, ∼3 nm splitting. Harnessing of vibronic quantum coherence and symmetry inspires light-perovskite quantum control and sub-THz-cycle "Rashba engineering" of spin-split bands for ultimate multifunction device.The lifetimes of the first excited 2^+ states in the N=Z nuclei ^80Zr, ^78Y, and ^76Sr have been measured using the γ-ray line shape method following population via nucleon-knockout reactions from intermediate-energy rare-isotope beams. The extracted reduced electromagnetic transition strengths yield new information on where the collectivity is maximized and provide evidence for a significant, and as yet unexplained, odd-odd vs even-even staggering in the observed values. The experimental results are analyzed in the context of state-of-the-art nuclear density-functional model calculations.We demonstrate a novel method for coherent optical manipulation of individual nuclear spins in the solid state, mediated by the electronic states of a proximal quantum emitter. Specifically, using the nitrogen-vacancy (NV) color center in diamond, we demonstrate control of a proximal ^14N nuclear spin via an all-optical Raman technique. We evaluate the extent to which the intrinsic physical properties of the NV center limit the performance of coherent control, and we find that it is ultimately constrained by the relative rates of transverse hyperfine coupling and radiative decay in the NV center's excited state. Possible extensions and applications to other color centers are discussed.We report on detailed experimental studies of a high-quality heterojunction insulated-gate field-effect transistor (HIGFET) to probe the particle-hole symmetry of the fractional quantum Hall effect (FQHE) states about half-filling in the lowest Landau level. The HIGFET is specially designed to vary the density of a two-dimensional electronic system under constant magnetic fields. We find in our constant magnetic field, variable density measurements that the sequence of FQHE states at filling factors ν=1/3,2/5,3/7… and its particle-hole conjugate states at filling factors 1-ν=2/3,3/5,4/7… have a very similar energy gap. Moreover, a reflection symmetry can be established in the magnetoconductivities between the ν and 1-ν states about half-filling. Our results demonstrate that the FQHE states in the lowest Landau level are manifestly particle-hole symmetric.
Here's my website: https://www.selleckchem.com/products/fumarate-hydratase-in-1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team