Notes
![]() ![]() Notes - notes.io |
Through these findings, and by defining workflow-specific exclusion criteria, we spotlight effective strategies for handling bias in M. tuberculosis Illumina WGS. This empirical analysis framework may be used to systematically evaluate coverage bias in other species using existing sequencing data.Pre-existing colonization with Staphylococcus aureus or Klebsiella pneumoniae has been found to increase the risk of infection in intensive care patients. We previously conducted a longitudinal study to characterize colonization of these two organisms in patients admitted to intensive care in a hospital in southern Vietnam. Here, using genomic and phylogenetic analyses, we aimed to assess the contribution these colonizing organisms made to infections. We found that in the majority of patients infected with S. aureus or K. pneumoniae, the sequence type of the disease-causing (infecting) isolate was identical to that of corresponding colonizing organisms in the respective patient. Further in-depth analysis revealed that in patients infected by S. aureus ST188 and by K. pneumoniae ST17, ST23, ST25 and ST86, the infecting isolate was closely related to and exhibited limited genetic variation relative to pre-infection colonizing isolates. Multidrug-resistant S. aureus ST188 was identified as the predominant agent of colonization and infection. Colonization and infection by K. pneumoniae were characterized by organisms with limited antimicrobial resistance profiles but extensive repertoires of virulence genes. Our findings augment the understanding of the link between bacterial colonization and infection in a low-resource setting, and could facilitate the development of novel evidence-based approaches to prevent and treat infections in high-risk patients in intensive care.Many flagellated bacteria possess multiple flagellins, but the roles and the compositions of each flagellin are diverse and poorly understood. In Ligilactobacillus agilis BKN88, there are two active flagellin gene paralogues but their function and composition in its flagellar filaments have not been described. The aim of this study is to find the function and composition of the flagellins by employing mutant strains each of which expresses a single flagellin or a modified flagellin. Two single flagellin-expressing strains were both flagellated while the number of flagella per cell in the single flagellin-expressing derivatives was lower than that in the wild type. Nonetheless, these derivative strains were apparently equally motile as the wild type. This indicates that either flagellin is sufficient for cell motility. The immunological activity via Toll-like receptor 5 of the single flagellin-expressing strains or purified single flagellins was readily detectable but mostly variably weaker than that of the wild type. The flagellar filaments of wild type L. agilis BKN88 were more acid-/thermo-stable than those of single flagellin-expressing derivatives. Using a combination of immunoprecipitation and flagellin-specific staining, wild type BKN88 appeared to possess heteropolymeric flagellar filaments consisting of both flagellins and each flagellin appeared to be equally distributed throughout the filaments. The results of this study suggest that the two flagellins together form a more robust filament than either alone and are thus functionally complementary.A novel actinobacterium, designated strain NEAU-D13T, was isolated from soil collected from Aohan Banner, Chifeng, Inner Mongolia Autonomous Region, China and characterized using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain NEAU-D13T belonged to the genus Lentzea and shared the highest sequence similarity with Lentzea kentuckyensisJCM 14913T (99.17 %). Morphological and chemotaxonomic characteristics of the strain also supported its assignment to the genus Lentzea. Cell walls contained meso-diaminopimelic acid as the diagnostic diamino acid and the whole-cell sugars were ribose and mannose. The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine and phosphatidylinositol. The menaquinone was only MK-9(H4). The major fatty acids were iso-C160, C160, anteiso-C170, iso-C150 and anteiso-C150. DNA G+C content was 68.71 mol%. Lumacaftor Phylogenetic analysis using the 16S rRNA gene sequences showed that the strain formed a stable clade with L. kentuckyensisJCM 14913T in the genus Lentzea. Meanwhile, a combination of digital DNA-DNA hybridization results and some phenotypic characteristics demonstrated that strain NEAU-D13T could be distinguished from its closely related strain. Therefore, it is concluded that strain NEAU-D13T represents a novel species of the genus Lentzea, for which the name Lentzea alba sp. nov. is proposed, with NEAU-D13T (=CCTCC AA 2019089T=JCM 33970T) as the type strain.A novel Gram-stain-negative, curved rod-shaped, 0.5-0.7 µm wide and 3.0-10.0 µm long, non-motile bacterium, designated strain AK53T, was isolated from a 5 m depth water sample collected from the Bay of Bengal, Visakhapatnam, India. Colonies on marine agar were circular, small, dark orange, shiny, smooth, translucent, flat, with an entire margin. The major fatty acids included iso-C15 0, iso-C15 0 3OH, anteiso-C15 0, iso-C15 1 G, iso-C17 0 3OH and summed feature 3 (C16 1 ω7c and/or C16 1 ω6c and/or iso-C15 0-2OH). Polar lipids included phosphatidylethanolamine and five unidentified lipids. The DNA G+C content of the strain AK53T was found to be 40.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain AK53T was closely related to Arenibacter latericius KMM 426T and Arenibacter certesii KMM3941T (pair-wise sequence similarity of 99.17 and 98.89 %, respectively), forming a distinct branch within the genus Arenibacter and clustering with A. latericius. Strain AK53T shared average nucleotide identity (ANIb, based on blast) of 78.07 and 77.44 % with A. latericius JCM 13508T and A. certesii JCM 13507T, respectively. Based on the observed phenotypic, chemotaxonomic characteristics and phylogenetic analysis, strain AK53T is described in this study as representing a novel species in the genus Arenibacter, for which the name Arenibacter amylolyticus sp. nov. is proposed. The type strain of Arenibacter amylolyticus is AK53T (=MTCC 12004T= JCM 19206T=KCTC 62553T).
My Website: https://www.selleckchem.com/products/VX-809.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team