Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Neuroscience research shows that, by relying on internal spatial representations provided by the hippocampus and entorhinal cortex, mammals are able to build topological maps of environments and navigate. Taking inspiration from mammals' spatial cognition mechanism, entorhinal-hippocampal cognitive systems have been proposed for robots to build cognitive maps. However, path integration and vision processing are time-consuming, and the existing model of grid cells is hard to achieve in terms of adaptive multi-scale extension for different environments, resulting in the lack of viability for real environments. In this work, an optimized dynamical model of grid cells is built for path integration in which recurrent weight connections between grid cells are parameterized in a more optimized way and the non-linearity of sigmoidal neural transfer function is utilized to enhance grid cell activity packets. Grid firing patterns with specific spatial scales can thus be accurately achieved for the multi-scale extension of grid cells. In addition, a hierarchical vision processing mechanism is proposed for speeding up loop closure detection. Experiment results on the robotic platform demonstrate that our proposed entorhinal-hippocampal model can successfully build cognitive maps, reflecting the robot's spatial experience and environmental topological structures.Excessive glucocorticoids (GC) may lead to the aggravation of several basic diseases including myopia, due to plasma hormone imbalances associated with the hypothalamic-pituitary-adrenal axis (HPAA). Electroacupuncture (EA) is an effective therapeutic method to treat many diseases, although it remains unclear whether EA at acupoints on the foot or back would be effective in treating eye diseases. It was recently found that visual cortex activity for responses to visual stimuli with spatial frequency and resting-state functional connectivity (FC) between the supramarginal gyrus and rostrolateral prefrontal cortex was significantly reduced in patients with high myopia. The present study aims to investigate the role of the alternation of resting-state FC among the bilateral visual cortex and hypothalamus in exerting anti-myopia effects of EA in GC-enhanced lens-induced myopic (LIM) guinea pigs such that the mechanisms of EA to treat GC-enhanced myopia at Shenshu (BL23) acupoints can be probed. To confirm the efftion in physiological parameters including reduced body weight and balance disruption in the four measured HPAA-associated plasma hormones. Our findings suggest that EA could effectively treat GC-enhanced myopia by increasing resting-state FC between the left and right visual cortices, which may be pivotal to further understanding the application and mechanisms of EA in treating GC-enhanced myopia.The popularity of mesoscopic whole-brain imaging techniques has increased dramatically, but these techniques generate teravoxel-sized volumetric image data. Visualizing or interacting with these massive data is both necessary and essential in the bioimage analysis pipeline; however, due to their size, researchers have difficulty using typical computers to process them. The existing solutions do not consider applying web visualization and three-dimensional (3D) volume rendering methods simultaneously to reduce the number of data copy operations and provide a better way to visualize 3D structures in bioimage data. Here, we propose webTDat, an open-source, web-based, real-time 3D visualization framework for mesoscopic-scale whole-brain imaging datasets. webTDat uses an advanced rendering visualization method designed with an innovative data storage format and parallel rendering algorithms. webTDat loads the primary information in the image first and then decides whether it needs to load the secondary information in the image. By performing validation on TB-scale whole-brain datasets, webTDat achieves real-time performance during web visualization. The webTDat framework also provides a rich interface for annotation, making it a useful tool for visualizing mesoscopic whole-brain imaging data.A Theory of Magnitude (ATOM) suggests that space, time, and quantities are processed through a generalized magnitude system. ATOM posits that task-irrelevant magnitudes interfere with the processing of task-relevant magnitudes as all the magnitudes are processed by a common system. Many behavioral and neuroimaging studies have found support in favor of a common magnitude processing system. However, it is largely unknown whether such cross-domain monotonic mapping arises from a change in the accuracy of the magnitude judgments or results from changes in precision of the processing of magnitude. Therefore, in the present study, we examined whether large numerical magnitude affects temporal accuracy or temporal precision, or both. In other words, whether numerical magnitudes change our temporal experience or simply bias duration judgments. The temporal discrimination (between comparison and standard duration) paradigm was used to present numerical magnitudes ("1," "5," and "9") across varied durations. We estimated temporal accuracy (PSE) and precision (Weber ratio) for each numerical magnitude. The results revealed that temporal accuracy (PSE) for large (9) numerical magnitude was significantly lower than that of small (1) and identical (5) magnitudes. This implies that the temporal duration was overestimated for large (9) numerical magnitude compared to small (1) and identical (5) numerical magnitude, in line with ATOM's prediction. However, no influence of numerical magnitude was observed on temporal precision (Weber ratio). The findings of the present study suggest that task-irrelevant numerical magnitude selectively affects the accuracy of processing of duration but not duration discrimination itself. Further, we argue that numerical magnitude may not directly affect temporal processing but could influence via attentional mechanisms.In the ongoing research of the functions of consciousness, special emphasis has been put on integration of information the ability to combine different signals into a coherent, unified one. Several theories of consciousness hold that this ability depends on - or at least goes hand in hand with - conscious processing. Yet some empirical findings have suggested otherwise, claiming that integration of information could take place even without awareness. Trying to reconcile this apparent contradiction, the "windows of integration" (WOI) hypothesis claims that conscious access enables signal processing over large integration windows. The hypothesis applies to integration windows defined either temporally, spatially, or semantically. DMX-5084 In this review, we explain the hypothesis and re-examine it in light of new studies published since it was suggested. In line with the hypothesis, these studies provide compelling evidence for unconscious integration, but also demonstrate its limits with respect to time, space, and semantic distance.
Read More: https://www.selleckchem.com/products/dmx-5084.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team