Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The redistribution of an incoming radiation into several beams is necessary in telecommunication to demultiplex data signals. In the terahertz spectral range, it can be realized by easy-to-manufacture diffractive optical elements (DOEs) allowing to focus the radiation into multiple focal spots in a single plane. In this article, we present diffractive optical elements focusing THz radiation into three focal spots. Different focal spot distributions (symmetric and asymmetric) are designed using an iterative algorithm. The phase distribution forming asymmetric focal spots can be realized by iterative design, which is a novel approach, to our knowledge. Then, the structures are manufactured using a sintering-based 3D-printing method from polyamide 12 (PA 12) and measured in an experimental setup for 150 GHz frequency. A novel approach based on neural networks (NNs) is proposed to optimize the phase delay maps of the structures to further improve their performance - the higher efficiency and the lower unwanted background noise.Wavelength routed optical switching promises low power and latency networking for data centres, but requires a wideband wavelength tuneable source (WTS) capable of sub-nanosecond switching at every node. We propose a hybrid WTS that uses time-interleaved tuneable lasers, each gated by a semiconductor optical amplifier, where the performance of each device is optimised using artificial intelligence. Through simulation and experiment we demonstrate record wavelength switch times below 900 ps across 6.05 THz (122×50 GHz) of continuously tuneable optical bandwidth. A method for further bandwidth scaling is evaluated and compared to alternative designs.Hyperspectral imaging that obtains the spatial-spectral information of a scene has been extensively applied in various fields but usually requires a complex and costly system. A single-pixel detector based hyperspectral system mitigates the complexity problem but simultaneously brings new difficulties on the spectral dispersion device. In this work, we propose a low-cost compressive single-pixel hyperspectral imaging system with RGB sensors. Based on the structured illumination single-pixel imaging configuration, the lens-free system directly captures data by the RGB sensors without dispersion in the spectral dimension. The reconstruction is performed with a pre-trained spatial-spectral dictionary, and the hyperspectral images are obtained through compressive sensing. In addition, the spatial patterns for the structured illumination and the dictionary for the sparse representation are optimized by coherence minimization, which further improve the reconstruction quality. In both spatial and spectral dimensions, the intrinsic sparse properties of the hyperspectral images are made full use of for high sampling efficiency and low reconstruction cost. This work may introduce opportunities for optimization of computational imaging systems and reconstruction algorithms towards high speed, high resolution, and low cost future.A nonlinear interferometer can be constructed by replacing the beam splitter in the Mach-Zehnder interferometer with four-wave mixing (FWM) process. Meanwhile, the conventional surface plasmon resonance (SPR) sensors can be extensively used to infer the information of refractive index of the sample to be measured via either angle demodulation technique or intensity demodulation technique. Combined with a single FWM process, a quantum SPR sensor has been realized, whose noise floor is reduced below standard quantum limit with sensitivity unobtainable with classical SPR sensor. Therefore, in this work we have theoretically proposed a nonlinear interferometric SPR sensor, in which a conventional SPR sensor is placed inside nonlinear interferometer, which is called as I-type nonlinear interferometric SPR sensor. We demonstrate that near resonance angle I-type nonlinear interferometric SPR sensor has the following advantages its degree of intensity-difference squeezing, estimation precision ratio, and signal-noise-ratio are improved by the factors of 4.6 dB, 2.3 dB, and 4.6 dB respectively than that obtained with a quantum SPR sensor based on a single FWM process. In addition, the theoretical principle of this work can also be expanded to other types of sensing, such as bending, pressure, and temperature sensors based on a nonlinear interferometer.Optical microcavities are capable of confining light to a small volume, which could dramatically enhance the light-matter interactions and hence improve the performances of photonic devices. However, in the previous works on the emergent properties with photonic molecules composed of multiple plasmonic microcavities, the underlying physical mechanism is unresolved, thereby imposing an inevitable restriction on manipulating degenerate modes in microcavity with outstanding performance. Here, we demonstrate the mode-mode interaction mechanism in photonic molecules composed of degenerate-mode cavity and single-mode cavity through utilizing the coupled mode theory. Numerical and analytical results further elucidate that the introduction of direct coupling between the degenerate-mode cavity and single-mode cavity can lift the mode degeneracy and give rise to the mode splitting, which contributes to single Fano resonance and dual EIT-like effects in the double-cavity photonic molecule structure. Four times the optical delay time compared to typical double-cavity photonic molecule are achieved after removing the mode degeneracy. Besides, with the preserved mode degeneracy, ultra-wide filtering bandwidth and high peak transmission is obtained in multiple-cavity photonic molecules. Our results provide a broad range of applications for ultra-compact and multifunction photonic devices in highly integrated optical circuits.We presented faster and more accurate simulations and experiments describing the revolution of a suspended particle in optical tweezers under a low pressure. Instead of the state-of-the-art offline method of pinhole alignment, we proposed an in situ method of revolution suppression by adjusting the laser beam while observing the power spectral density and time-domain plot of the particle centroid displacement. Piceatannol Syk inhibitor The experimental results under different air pressures show that our method is more effective at low pressures. We observed that "revolution occurs when radial alignment error is below the threshold" and uncovered the mechanism behind this phenomenon. The rapidly growing Q value of the revolution indicates a high-precision resonance measurement method under lower air pressure compared with random translation measurements.
Here's my website: https://www.selleckchem.com/products/piceatannol.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team