Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
g term.Group-IV based light sources are one of the missing links towards fully CMOS compatible photonic circuits. Combining both silicon process compatibility and a pseudo-direct band gap, germanium is one of the most viable candidates. To overcome the limitation of the indirect band gap and turning germanium in an efficient light emitting material, the application of strain has been proven as a promising approach. So far the experimental verification of strain induced bandgap modifications were based on optical measurements and restricted to moderate strain levels. Y27632 In this work, we demonstrate a methodology enabling to apply tunable tensile strain to intrinsic germanium [Formula see text] nanowires and simultaneously perform in situ optical as well as electrical characterization. Combining I/V measurements and μ-Raman spectroscopy at various strain levels, we determined a decrease of the resistivity by almost three orders of magnitude for strain levels of ∼5%. Thereof, we calculated the strain induced band gap narrowing in remarkable accordance to recently published simulation results for moderate strain levels up to 3.6%. Deviations for ultrahigh strain values are discussed with respect to surface reconfiguration and reduced charge carrier scattering time.Experimental validation of a synthetic aperture imaging technique using a therapeutic random phased array is described, demonstrating the dual nature of imaging and therapy of such an array. The transducer is capable of generating both continuous wave high intensity beams for ablating the tumor and low intensity ultrasound pulses to image the target area. Pulse-echo data is collected from the elements of the phased array to obtain B-mode images of the targets. Since therapeutic arrays are optimized for therapy only with concave apertures having low f-number and large directive elements often coarsely sampled, imaging can not be performed using conventional beamforming. We show that synthetic aperture imaging is capable of processing the acquired RF data to obtain images of the field of interest. Simulations were performed to compare different synthetic aperture imaging techniques to identify the best algorithm in terms of spatial resolution. Experimental validation was performed using a 1 MHz, 256-elements, sguidance and treatment planning of the HIFU procedure.The way in which interactions between mechanics and biochemistry lead to the emergence of complex cell and tissue organization is an old question that has recently attracted renewed interest from biologists, physicists, mathematicians and computer scientists. Rapid advances in optical physics, microscopy and computational image analysis have greatly enhanced our ability to observe and quantify spatiotemporal patterns of signalling, force generation, deformation, and flow in living cells and tissues. Powerful new tools for genetic, biophysical and optogenetic manipulation are allowing us to perturb the underlying machinery that generates these patterns in increasingly sophisticated ways. Rapid advances in theory and computing have made it possible to construct predictive models that describe how cell and tissue organization and dynamics emerge from the local coupling of biochemistry and mechanics. Together, these advances have opened up a wealth of new opportunities to explore how mechanochemical patterning shapes organismal development. In this roadmap, we present a series of forward-looking case studies on mechanochemical patterning in development, written by scientists working at the interface between the physical and biological sciences, and covering a wide range of spatial and temporal scales, organisms, and modes of development. Together, these contributions highlight the many ways in which the dynamic coupling of mechanics and biochemistry shapes biological dynamics from mechanoenzymes that sense force to tune their activity and motor output, to collectives of cells in tissues that flow and redistribute biochemical signals during development.Several passivation techniques are developed and compared in terms of their ability to preserve the optical properties of close-to-surface InAs/GaAs quantum dots (QDs). In particular, the influence of N-passivation by hydrazine chemical treatment, N-passivation by hydrazine followed by atomic layer deposition (ALD) of AlO x and use of AlN x deposited by plasma-enhanced ALD are reported. The effectiveness of the passivation is benchmarked by measuring the emission linewidths and decay rates of photo-carriers for the near-surface QDs. All three passivation mechanisms resulted in reducing the oxidation of Ga and As atoms at the GaAs surface and consequently in enhancing the room-temperature photoluminescence (PL) intensity. However, long-term stability of the passivation effect is exhibited only by the hydrazine + AlO x process and more significantly by the AlN x method. Moreover, in contrast to the results obtained from hydrazine-based methods, the AlN x passivation strongly reduces the spectral diffusion of the QD exciton lines caused by charge fluctuations at the GaAs surface. The AlN x passivation is found to reduce the surface recombination velocity by three orders of magnitude (corresponding to an increase of room-temperature PL signal by ∼1030 times). The reduction of surface recombination velocity is demonstrated on surface-sensitive GaAs (100) and the passivating effect is stable for more than one year. This effective method of passivation, coupled with its stability in time, is extremely promising for practical device applications such as quantum light sources based on InAs/GaAs QDs positioned in small-volume photonic cavities and hence in the proximity of GaAs-air interface.We report successful fabrication of high performance ion-gated field-effect transistors (FETs) on hydrogenated diamond surface. Investigations on the hydrogen (H)-terminated diamond by Hall effect measurements shows Hall mobility as high as ∼200 cm2 V-1 s-1. In addition we demonstrate a rapid fabrication scheme for achieving stable high performance devices useful for determining optimal growth and fabrication conditions. We achieved H-termination using hydrogen plasma treatment with a sheet resistivity as low as ∼1.3 kΩ/sq. Conductivity through the FET channel is studied as a function of bias voltage on the liquid ion-gated electrode from -3.0 to 1.5 V. Stability of the H-terminated diamond surface was studied by varying the substrate temperature up to 350 °C. It was demonstrated that the sheet resistance and carrier densities remain stable over 3 weeks in ambient air atmosphere even at substrate temperatures up to 350 °C, whereas increasing temperature beyond this limit has effected hydrogenation. This study opens new avenues for carrying out fundamental research on diamond FET devices with ease of fabrication and high throughput.
Website: https://www.selleckchem.com/products/Y-27632.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team