Notes
![]() ![]() Notes - notes.io |
Organic fluorophores, such as Cy3 and Cy5, have been widely used as chemical labels to probe the structure and dynamics of membrane proteins. Although a number of previous studies have reported on the possibility of some of the water-soluble fluorophores to interact with lipid bilayers, detailed fluorophore-lipid interactions and, more importantly, the potential effect of such interactions on the natural dynamics of the labeled membrane proteins have not been well studied. We have performed a large set of all-atom molecular dynamics simulations employing the highly mobile membrane mimetic model to describe spontaneous partitioning of the fluorophores into lipid bilayers with different lipid compositions. Spontaneous membrane partitioning of Cy3 and Cy5 fluorophores captured in these simulations proceeds in two steps. Electrostatic interaction between the fluorophores and the lipid headgroups facilitates the initial, fast membrane association of the fluorophores, followed by slow insertion of hydrophobic moieties into the lipid bilayer core. After the conversion of the resulting membrane-bound systems to full-membrane representations, biased-exchange umbrella sampling simulations are performed for free energy calculations, revealing a higher energy barrier for partitioning into negatively charged (phosphatidylserine or phosphatidylcholine) membranes than purely zwitterionic (phosphatidylcholine or phosphatidylethanolamine) ones. Furthermore, the potential effect of fluorophore-lipid interactions on membrane proteins has been examined by covalently linking Cy5 to single- and multipass transmembrane helical proteins. Equilibrium simulations show strong position-dependent effects of Cy5-tagging on the structure and natural dynamics of membrane proteins. Interactions between the tagged protein and Cy5 were also observed. Our results suggest that fluorophore-lipid interactions can affect the structure and dynamics of membrane proteins to various extents, especially in systems with higher structural flexibility.The mesophilic inorganic pyrophosphatase from Escherichia coli (EcPPase) retains function at 353 K, the physiological temperature of hyperthermophilic Thermococcus thioreducens, whereas the homolog protein (TtPPase) from this hyperthermophilic organism cannot function at room temperature. To explain this asymmetric behavior, we examined structural and dynamical properties of the two proteins using molecular dynamics simulations. The global flexibility of TtPPase is significantly higher than its mesophilic homolog at all tested temperature/pressure conditions. However, at 353 K, EcPPase reduces its solvent-exposed surface area and increases subunit compaction while maintaining flexibility in its catalytic pocket. In contrast, TtPPase lacks this adaptability and has increased rigidity and reduced protein/water interactions in its catalytic pocket at room temperature, providing a plausible explanation for its inactivity near room temperature.Planar pore-spanning membranes (PSMs) have been shown to be a versatile tool to resolve elementary steps of the neuronal fusion process. selleck inhibitor However, in previous studies, we monitored only lipid mixing between fusing large unilamellar vesicles and PSMs and did not gather information about the formation of fusion pores. To address this important step of the fusion process, we entrapped sulforhodamine B at self-quenching concentrations into large unilamellar vesicles containing the v-SNARE synaptobrevin 2, which were docked and fused with lipid-labeled PSMs containing the t-SNARE acceptor complex ΔN49 prepared on gold-coated porous silicon substrates. By dual-color spinning disk fluorescence microscopy with a time resolution of ∼20 ms, we could unambiguously distinguish between bursting vesicles, which was only rarely observed ( less then 0.01%), and fusion pore formation. From the time-resolved dual-color fluorescence time traces, we were able to identify different fusion pathways, including remaining three-dimensional postfusion structures with released content and transient openings and closings of the fusion pores. Our results on fusion pore formation and lipid diffusion from the PSM into the fusing vesicle let us conclude that the content release, i.e., fusion pore formation after the merger of the two lipid membranes occurs almost simultaneously.Keratin intermediate filaments form dynamic intracellular networks, which span the entire cytoplasm and provide mechanical strength to the cell. The mechanical resilience of the keratin intermediate filament network itself is determined by filament bundling. The bundling process can be reproduced in artificial conditions in the absence of any specific cross-linking proteins, which suggests that it is driven by generic physical forces acting between filaments. Here, we suggest a detailed model for bundling of keratin intermediate filaments based on interfilament electrostatic and hydrophobic interactions. It predicts that the process is limited by an optimal bundle thickness, which is determined by the electric charge of the filaments, the number of hydrophobic residues in the constituent keratin polypeptides, and the extent to which the electrolyte ions are excluded from the bundle interior. We evaluate the kinetics of the bundling process by considering the energy barrier a filament has to overcome for joining a bundle.Accurately predicting the protein thermostability changes upon single point mutations in silico is a challenge that has implications for understanding diseases as well as industrial applications of protein engineering. Free energy perturbation (FEP) has been applied to predict the effect of single point mutations on protein stability for over 40 years and emerged as a potentially reliable prediction method with reasonable throughput. However, applications of FEP in protein stability calculations in industrial settings have been hindered by a number of limitations, including the inability to model mutations to and from prolines in which the bonded topology of the backbone is modified and the complexity in modeling charge-changing mutations. In this study, we have extended the FEP+ protocol to enable the accurate modeling of the effects on protein stability from proline mutations and from charge-changing mutations. We also evaluated the influence of the unfolded model in the stability calculations using increasingly longer peptides with native sequence and conformations.
Read More: https://www.selleckchem.com/products/dl-thiorphan.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team