NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Age-appropriate vaccination coverage and its particular determinants in children aged 12-36 months inside Nepal: a national and subnational evaluation.
Further, we combine multi-wavelength and mixed-state approaches to jointly solve temporal and spatial partial coherence in ptychography so that it can handle various disadvantageous experimental effects. The significant relaxation in coherence requirements by our approaches allows the use of high-flux broadband X-ray sources for high-efficient and high-resolution ptychographic imaging.High-quality Hg1-xCdxTe (MCT) single crystals are essential for two-dimensional infrared detector arrays. Crystal quality plays an important role on the performance of these devices. Here, the dislocations present at the interface of CdZnTe (CZT) substrates and liquid-phase epitaxy grown MCT epilayers are investigated using X-ray Bragg diffraction imaging (XBDI). The diffraction contributions coming from the threading dislocations (TDs) of the CZT substrate and the MCT epilayers are separated using weak-beam conditions in projection topographs. The results clearly suggest that the lattice parameter of the growing MCT epilayer is, at the growth inception, very close to that of the CZT substrate and gradually departs from the substrate's lattice parameter as the growth advances. Moreover, the relative growth velocity of the MCT epilayer around the TDs is found to be faster by a factor of two to four compared with the matrix. selleckchem In addition, a fast alternative method to the conventional characterization methods for probing crystals with low dislocation density such as atomic force microscopy and optical interferometry is introduced. A 1.5 mm × 1.5 mm area map of the epilayer defects with sub-micrometre spatial resolution is generated, using section XBDI, by blocking the diffraction contribution of the substrate and scanning the sample spatially.Increases in X-ray brightness from synchrotron light sources lead to a requirement for higher frame rates from hybrid pixel array detectors (HPADs), while also favoring charge integration over photon counting. However, transfer of the full uncompressed data will begin to constrain detector design, as well as limit the achievable continuous frame rate. Here a data compression scheme that is easy to implement in a HPAD's application-specific integrated circuit (ASIC) is described, and how different degrees of compression affect image quality in ptychography, a commonly employed coherent imaging method, is examined. Using adaptive encoding quantization, it is shown in simulations that one can digitize signals up to 16383 photons per pixel (corresponding to 14 bits of information) using only 8 or 9 bits for data transfer, with negligible effect on the reconstructed image.Analyser-based phase-contrast imaging (ABPCI) is a highly sensitive phase-contrast imaging method that produces high-contrast images of weakly absorbing materials. However, it is only sensitive to phase gradient components lying in the diffraction plane of the analyser crystal [i.e. in one dimension (1-D)]. In order to accurately account for and measure phase effects produced by the wavefield-sample interaction, ABPCI and other 1-D phase-sensitive methods must achieve 2-D phase gradient sensitivity. An inclined geometry method was applied to a Laue geometry setup for X-ray ABPCI through rotation of the detector and object about the optical axis. This allowed this traditionally 1-D phase-sensitive phase-contrast method to possess 2-D phase gradient sensitivity. Tomographic datasets were acquired over 360° of a multi-material phantom with the detector and sample tilted by 8°. The real and imaginary parts of the refractive index were reconstructed for the phantom.Nano-resolution synchrotron X-ray spectro-tomography has been demonstrated as a powerful tool for probing the three-dimensional (3D) structural and chemical heterogeneity of a sample. By reconstructing a number of tomographic data sets recorded at different X-ray energy levels, the energy-dependent intensity variation in every given voxel fingerprints the corresponding local chemistry. The resolution and accuracy of this method, however, could be jeopardized by non-ideal experimental conditions, e.g. instability in the hardware system and/or in the sample itself. Herein is presented one such case, in which unanticipated sample deformation severely degrades the data quality. To address this issue, an automatic 3D image registration method is implemented to evaluate and correct this effect. The method allows the redox heterogeneity in partially delithiated LixTa0.3Mn0.4O2 battery cathode particles to be revealed with significantly improved fidelity.Niobium metal foils were heat-treated at 900°C under different conditions and in situ investigated with time-resolved X-ray absorption fine-structure (EXAFS and XANES) measurements. The present study aims to mimic the conditions usually applied for heat treatments of Nb materials used for superconducting radiofrequency cavities, in order to better understand the evolving processes during vacuum annealing as well as for heat treatments in controlled dilute gases. Annealing in vacuum in a commercially available cell showed a substantial amount of oxidation, so that a designated new cell was designed and realized, allowing treatments under clean high-vacuum conditions as well as under well controllable gas atmospheres. The experiments performed under vacuum demonstrated that the original structure of the Nb foils is preserved, while a detailed evaluation of the X-ray absorption fine-structure data acquired during treatments in dilute air atmospheres (10-5 mbar to 10-3 mbar) revealed a linear oxidation with the time of the treatment, and an oxidation rate proportional to the oxygen (air) pressure. The structure of the oxide appears to be very similar to that of polycrystalline NbO. The cell also permits controlled exposures to other reactive gases at elevated temperatures; here the Nb foils were exposed to dilute nitrogen atmospheres after a pre-conditioning of the studied Nb material for one hour under high-vacuum conditions, in order to imitate typical conditions used for nitrogen doping of cavity materials. Clear structural changes induced by the N2 exposure were found; however, no evidence for the formation of niobium nitride could be derived from the EXAFS and XANES experiments. The presented results establish the feasibility to study the structural changes of the Nb materials in situ during heat treatments in reactive gases with temporal resolution, which are important to better understand the underlaying mechanisms and the dynamics of phase formation during those heat treatments in more detail.
Homepage: https://www.selleckchem.com/products/oss-128167.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.