Notes
![]() ![]() Notes - notes.io |
01 and p = 0.03), and higher sulII gene prevalence (p = 0.04), consistent with anthropogenic pressure. Migratory species (only present in ROA) showed statistically significant higher mcr-1 (polymyxins) and blaTEM (betalactam) prevalences (respectively, p = 0.009 and p = 0.02), and mcr-1 percentage load (p = 0.0079) in comparison with non-migratory. To our knowledge, this is the largest ARGs survey based on direct detection and quantification in seabirds worldwide, and the first to evaluate non-synanthropic species in oceanic islands. This is the first detection of mcr-1 in wild free-ranging seabirds in Brazil and in free-ranging migratory non-synanthropic seabirds worldwide. Our findings show the importance of biological and ecological factors, highlighting the role of seabirds as anthropization sentinels and ARGs-pollution environmental indicators (even in a pristine biotope), and their involvement in the One Health epidemiological chain of ARGs.Sediment matrices, as integral organo-mineral parts of aquatic bodies, can effectively bind and accumulate nutrients and potentially hazardous substances from diffuse and/or point sources of contamination. In this study, we analysed the longitudinal distribution of macronutrients (total N and available P and K) and the mechanical composition of the sediments of Jegricka watercourse (a part of the multi-functional Danube-Tisa-Danube canal network) known for its exposure to anthropogenic loads. The results showed that the nutrient pollution index was mostly above 1.0 (in 76%, 86% and 93% of the analysed samples for K, N and P, respectively), and the mean values for N, P and K were 2.69, 1.92 and 1.24, respectively. The average content of all nutrients and the sand fraction were significantly higher, whereas the clay fraction was considerably lower, in the sediment samples than in the adjacent arable Chernozem soil used as a benchmark. The differences in the nutrient contents and mechanical properties in the sediments were measured longitudinally (at upstream vs. downstream stations) and assessed using correlation, cluster analysis, and principal component analysis. The results suggest that the nutrient sources in the sediments as well as their transport and loading mechanisms along Jegricka watercourse are diverse and complex, likely driven by a combination of untreated industrial/urban wastewater discharges, erosion and surface runoff from the surrounding agricultural land. As a majority of the analysed watercourse banks belong to areas of special ecological value, the obtained results may be useful i) indicators for designing and implementation of sustainable land/water policies and measures for the protection and rehabilitation of these valuable ecosystems, ii) inputs for testing/calibrating the sediment transport models and iii) the basis for sediment management.Soil nitrogen (N) plays a central role in soil quality and biogeochemical cycles. However, little is known about the distribution and spatial variability of the different fractions of soil N within entire soil profiles. This study aimed to investigate the potential of laboratory-based hyperspectral imaging (HSI) spectroscopy to retrieve and map total N (TN), available N (AvailN), ammonium N (NH4-N), nitrate N (NO3-N), and microbial biomass N (MBN) in soil profiles at a high resolution. HSI images of eleven intact soil profiles of 100 ± 5 cm depth from three typical soil types were recorded. A variety of nonlinear machine learning techniques, such as artificial neural networks (ANN), cubist regression tree (Cubist), k-nearest neighbour (KNN), support vector machine regression (SVMR) and extreme gradient boosting (XGBoost), were compared with a partial least squares regression (PLSR) to determine the most suitable model for the prediction of the various soil N fractions. Overall, the results showed that nonlinear techniques performed better than PLSR in most cases, with a high coefficient of determination (R2) and low root mean square error (RMSE). Among the models, SVMR was found to be superior to the other tested models for TN (R2P = 0.94, RMSEP = 0.17 g kg-1), AvailN (R2P = 0.94, RMSEP = 13.35 mg kg-1), NO3-N (R2P = 0.82, RMSEP = 7.31 mg kg-1), and NH4-N (R2P = 0.70, RMSEP = 1.51 mg kg-1) based on independent validation, whereas MBN (R2P = 0.63, RMSEP = 6.62 mg kg-1) was predicted best by KNN. In addition, SVMR required less computational time and was less sensitive to spectral noise. It can therefore be concluded that HSI spectroscopy combined with SVMR is suitable for the high-resolution mapping of various soil N fractions in soil profiles.Wastewater treatment plants (WWTPs) are considered the main sources of chemicals of emerging concern (CECs) in aquatic environments, and can negatively impact aquatic ecosystems. Selleck MEK inhibitor In this study, WWTP influent, effluent, and sludge, and upstream and downstream waters from the WWTP recipient were investigated at 15 locations for a total of 164 CECs, including pharmaceuticals, personal care products, industrial chemicals, per- and polyfluoroalkyl substances (PFASs), and pesticides. In addition, zebrafish (Danio rerio) embryo toxicity tests (ZFET) were applied to WWTP influent and effluent, and upstream and downstream waters from WWTP recipients. A total of 119 CECs were detected in at least one sample, mean concentrations ranging from 0.11 ng/L (propylparaben) to 64,000 ng/L (caffeine), in wastewater samples and from 0.44 ng/L (ciprofloxacin) to 19,000 ng/L (metformin) in surface water samples. Large variations of CEC concentrations were found between the selected WWTPs, which can be explained by differences in CEC composition in influent water and WWTP treatment process. The sludge-water partitioning coefficient (Kd) of CECs showed a significant linear correlation to octanol/water partition coefficient (KOW) (p less then 0.001), and thus could be used for predicting their fate in the aqueous and solid phase. The ΣCEC concentrations in WWTPs declined by on average 60%, based on comparisons of WWTP influent and effluent concentrations. The high concentrations of CECs in WWTP effluent resulted in, on average, 50% higher concentrations of CECs in water downstream of WWTPs compared with upstream. Some WWTP samples showed toxicity in ZFET compared with the respective control group, but no individual CECs or groups of CECs could explain this toxicity. These results could provide a theoretical basis for optimization of existing treatment systems of different designs, and could significantly contribute to protecting recipient waters.
Website: https://www.selleckchem.com/MEK.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team