Notes
![]() ![]() Notes - notes.io |
DNA double-strand breaks (DSBs) are an important mechanism of chemotherapy in epithelial ovarian cancer (EOC). Kin17 DNA and RNA binding protein (KIN17) serves a crucial role in DSB repair. In the present study, the association between KIN17 and EOC, and the effects of KIN17 on EOC cells in vitro were evaluated. A bioinformatics method was used to determine the mRNA expression levels of KIN17 in EOC and its association with EOC prognosis including overall survival (OS) and progression free survival (PFS) time. buy 10-Deacetylbaccatin-III Western blotting and immunohistochemical staining were used to evaluate the expression levels of KIN17 in EOC samples. Kaplan-Meier and Cox regression analyses were utilized to analyze risk factors for the OS of patients with EOC. A Cell Counting Kit-8 assay was performed to explore the roles of KIN17 in SKOV3 cells. Both the transcription and expression of KIN17 were upregulated in EOC tissues. Furthermore, the OS of patients with EOC with high mRNA expression levels of KIN17 was shorter than that of patients with EOC with low expression levels. High KIN17 expression was an independent risk factor for EOC prognosis. Furthermore, KIN17 knockdown inhibited the proliferation of SKOV3 cells, enhanced the sensitivity of the cells to cisplatin and inhibited the migration ability of the cells. These results suggested that KIN17 may act as an ideal candidate for therapy and as a prognostic biomarker of EOC, although the underlying mechanisms require further exploration.Osteosarcoma is a malignant bone tumor that commonly occurs in young individuals. It accounts for 10% of solid tumors in those who are 15-19 years old. MicroRNA (miRNA/miR) dysregulation serves a crucial role in the molecular mechanism of osteosarcoma. The present study reported a novel miRNA (miR-1226-3p) and investigated its function in osteosarcoma. miR-1226-3p mimics and miR-1226-3p antisense oligonucleotides were transfected into human osteosarcoma SaOS-2 cells to alter miR-1226-3 expression, while the hFOB 1.19 cell line was used as the control. The apoptosis rate was analyzed using a dead cell apoptosis kit. TNF receptor-associated factor 3 (TRAF3) protein expression was assayed by western blotting. The results of bioinformatics and clinical specimen analyses revealed that higher expression levels of miR-1226-3p were associated with lower survival rates. Additionally, the results of experiments on cultured cells revealed that miR-1226-3p promoted the proliferation of SaOS-2 cells, while miR-1226-3p inhibition decreased cell proliferation and increased apoptosis. Furthermore, it was revealed that miR-1226-3p targeted TRAF3 in SaOS-2 cells. In conclusion, the present study suggested that miR-1226-3p promoted the proliferation of osteosarcoma cells.Since bromodomain containing 4 (brd4) has been considered as a prominent cancer target, numerous attempts have been made to develop potent brd4 bromodomain inhibitors. The present study provided a novel chemical scaffold which inhibited brd4 activity. Mid-throughput screening against brd4 bromodomain was performed using alpha-screen and homogeneous time-resolved fluorescence assays. Furthermore, cell cytotoxicity and xenograft assays were performed to examine if the compound was effective both in vitro and in vivo. As a result, it was revealed that compounds having naphthalene-1,4-dione scaffold inhibited the binding of bromodomain to acetylated histone. The compounds with naphthalene-1,4-dione had cytotoxic effects against the Ty82 cell line, a NUT midline carcinoma cell line, whose proliferation is dependent on brd4 activity. A10, one of the compounds with naphthalene-1,4-dione scaffold, also exhibited tumor growth inhibition effects in the xenograft assay. In addition, the compounds exhibited cytotoxic effects against gastric cancer cell lines which were resistant to I-BET-762, a BET bromodomain inhibitor. In conclusion, the novel scaffold to suppress brd4 activity was effective against cancer cells both in vitro and in vivo.Long non-coding (lnc) RNAs have emerged as important regulators of cancer development and progression. Several lncRNAs have been reported to be associated with prostate cancer (PCa); however, the involvement of lncRNA SNHG17 in PCa remains unclear. In the present study, the mRNA expression level of SNHG17 in 58 pairs of PCa tumor samples and adjacent non-tumor tissues, as well as in PCa tumor cell lines was analyzed. The regulatory effect of SNHG17 on the oncogenic phenotypes of the C4-2 tumor cell line was also investigated. The clinicopathological analysis revealed that SNHG17 mRNA expression level was increased in the PCa tumor samples, and its high expression levels were associated with poor patient outcomes, indicating that SNHG17 may act as a biomarker for the prognosis of PCa. SNHG17 mRNA expression level was also increased in different PCa tumor cell lines. Functionally, SNHG17 increased C4-2 tumor cell growth and aggressiveness by stimulating tumor cell proliferation, survival, invasion and resistance to chemotherapy. Furthermore, SNHG17 promoted in vivo tumor growth in a xenograft mouse model. Notably, the SNHG17-induced in vitro and in vivo oncogenic effects were associated with activation of the β-catenin pathway. The results from the present study revealed that lncRNA SNHG17 could be an important regulator in the oncogenic properties of human PCa and may; therefore, represent a potential PCa therapeutic target.Liver cancer is one of the most common malignant human tumors with the highest morbidity and mortality rates of all cancer types in China. Evidence suggests that long non-coding RNA prostate cancer-associated transcript 6 (PCAT6) plays an essential role in tumor progression. However, the roles and mechanism of PCAT6 in liver cancer remain unclear. The present study showed that the expression of PCAT6 and heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) was upregulated in liver cancer tissues compared with non-cancerous tissues and were associated with poor overall survival time, whereas microRNA (miR)-326 expression was downregulated. Moreover, knockdown of PCAT6 significantly inhibited the proliferation and invasion of liver cancer cells in vitro and in vivo. A dual-luciferase reporter gene assay demonstrated that PCAT6 could bind to miR-326 and that hnRNPA2B1 was a direct target gene of miR-326. Mechanistically, silenced PCAT6 suppressed the malignant phenotype of liver cancer cells through upregulating the inhibitory effect of miR-326 on hnRNPA2B1 expression.
Here's my website: https://www.selleckchem.com/products/10-dab-10-deacetylbaccatin.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team