Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Many international non-government organizations (INGOs) implement interventions designed to promote gender equality, investing significant resources into embedding gender considerations into programmes through the strategy of gender mainstreaming. However, despite their altruistic mission, INGOs place less focus on addressing culture and power hierarchies within their organizations. This article suggests that many INGOs fail to walk the talk on gender equality. Through an analysis of recent challenges facing the development and humanitarian aid sector, including gaps in safeguarding and #AidToo, this paper emphasizes the importance of addressing gender equality from the inside out. It draws on feminist perspectives, the notion of the "deep structure" of organizations and the author's own experiences to argue for the need to address gendered, racial and colonial power hierarchies within the organizational culture of INGOs. The article argues that it is no longer sufficient to reduce gender mainstreaming and inclusion to programming interventions, and that INGOs need to reflexively and intentionally tackle power and inequalities within their own culture and structures.This study aimed to characterize the effects of diets with different energy levels on the growth performance, plasma parameters, and central AMPK signaling pathway in broilers under dexamethasone (DEX)-induced stress. A total of 216 1-day-old male broiler chickens were allocated to groups fed with high (HED), National Research Council-recommended (control), or low (LED) energy diets. At 10 days old, chickens were treated with or without dexamethasone (DEX, 2 mg/kg body weight) for 3 consecutive days. HED increased broiler average daily gain (ADG) at 10 days old, compared with the LED (P less then 0.05), while average daily feed intake (ADFI) and feed conversion rate (FCR) decreased as the dietary energy level increased (P less then 0.05). Chickens fed a HED had higher total protein (TP) content, albumin (ALB), glucose (GLU), total cholesterol (TCHO), high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol, compared with the control group (P less then 0.05). At 13 days old, DEX decreased ADG and increased FCR in broilers fed with different energy diets (P less then 0.05). The DEX-HED group had a higher ADFI than non-DEX treated HED group chickens. In addition, TP, ALB, triglycerides (TG), TCHO, HDL, and LDL content levels in the DEX group were higher than those in the control group (P less then 0.05). The uric acid (UA) content of the LED group was higher than that of the HED group (P less then 0.05). Further, gene expression levels of liver kinase B1, AMP-activated protein kinase α1, neuropeptide Y, and GC receptor in the hypothalamus were increased in chickens treated with DEX (P less then 0.05). There was a trend toward interaction between plasma TCHO and hypothalamic LKB1 expression (0.05 less then P less then 0.1). In conclusion, this study suggests that HED improves growth performance, plasma glucose and total cholesterol at 10 days old broilers, but had no significant effect on performance, plasma parameters, and central AMPK in stressed broilers.Tick-borne rickettsioses present a significant public health threat among emerging tick-borne diseases. find more In Tunisia, little is known about tick-borne Rickettsia pathogens. Therefore, the aim of this study was to investigate the presence of Rickettsia species in small ruminant ticks from Tunisia. Adult ticks (n = 694) were collected from goats and sheep in northern Tunisia. Obtained ticks were identified as Rhipicephalus turanicus (n = 434) and Rhipicephalus sanguineus sensu lato (n = 260). Selected ticks (n = 666) were screened for the presence of Rickettsia spp. by PCR targeting a partial sequence of the ompB gene followed by sequence analysis. Rickettsial DNA was detected in 122 (18.3%) tested tick samples. The infection rates in Rh. turanicus and Rh. sanguineus s.l. ticks were 23.4 and 9.5%, respectively. The overall prevalence of rickettsial DNA was markedly higher in ticks collected from goats (23.2%) compared to those infesting sheep (7.9%). The detection of rickettsial DNA was significantly higher in ticks from the governorate of Beja (39.0%) than those from the governorate of Bizerte (13.9%). Two additional genes, the outer membrane protein A gene (ompA) and the citrate synthase gene (gltA), were also targeted for further characterization of the detected Rickettsia species. Genotyping and phylogenetic analysis based on partial sequences (n = 106) of the three different genes revealed that positive ticks are infected with different isolates of two Spotted Fever Group (SFG) Rickettsia, namely, Rickettsia massiliae and Rickettsia monacensis, closely related to those infecting camels and associated ticks from Tunisia, and humans and small ruminant ticks from neighboring countries like Italy, France, and Spain.Probiotics serving as an alternative to the criticized antibiotics mainly focus on improving animal's growth and health. After realizing the dangers posed by diseases that have led to lots of economic losses, aquaculture scientists have sought the usage of probiotics. However, most probiotics are ineffective in eliciting aquatic animals' preferred effects, since they are from non-fish sources. Again, there are even a few marine aquatic probiotics. Given this, a study was conducted to investigate the probiotic potential of the bacteria species isolated from the digestive tract of hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂). Based on the morphological, biochemical, 16S rRNA sequencing analysis and evolutionary relationships, the isolated species were identified as Bacillus tequilensis GPSAK2 (MW548630), Bacillus velezensis GPSAK4 (MW548635), and Bacillus subtilis GPSAK9 (MW548634), which were designated as GPSAK2, GPSAK4, and GPSAK9 strains, respectively. Their probiotic potentials inxin B, vancomycin (except GPSAK9, which was resistant), sulfamethoxazole (except GPSAK9, which was moderately susceptible), amikacin, minocycline, ofloxacin, norfloxacin, doxycycline, neomycin, gentamicin, tetracycline, carbenicillin, midecamycin (except GPSAK9, which was moderately susceptible), ciprofloxacin, piperacillin, and cefoperazone. All isolates demonstrated good antimicrobial activity against four pathogens, viz. Streptococcus agalactiae, Streptococcus iniae, Vibrio harveyi, and Vibrio alginolyticus. The results collectively suggest that Bacillus strains GPSAK2, GPSAK4, and GPSAK9 could serve as potential probiotic candidates that can be used to improve the growth and health status of aquatic animals, especially grouper.
Homepage: https://www.selleckchem.com/products/gw2580.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team