NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Symptomatic lung embolus soon after catheter removal in youngsters using catheter associated thrombosis: An investigation from the Speak Consortium.
This approach reduces irrelevant noise interference while increasing the robustness of the pattern. The performance of the framework was evaluated on BCI competition IV dataset 2b, where the mean accuracy reached 79.6%, and the average kappa value reached 0.592. The experimental results validate the feasibility of the framework and show the performance improvement of MI-EEG signal classification.Electrocardiographic (ECG) signals have been used for clinical purposes for a long time. Notwithstanding, they may also be used as the input for a biometric identification system. Several studies, as well as some prototypes, are already based on this principle. One of the methods already used for biometric identification relies on a measure of similarity based on the Kolmogorov Complexity, called the Normalized Relative Compression (NRC)-this approach evaluates the similarity between two ECG segments without the need to delineate the signal wave. This methodology is the basis of the present work. We have collected a dataset of ECG signals from twenty participants on two different sessions, making use of three different kits simultaneously-one of them using dry electrodes, placed on their fingers; the other two using wet sensors placed on their wrists and chests. The aim of this work was to study the influence of the ECG protocol collection, regarding the biometric identification system's performance. Several variables in the data acquisition are not controllable, so some of them will be inspected to understand their influence in the system. Movement, data collection point, time interval between train and test datasets and ECG segment duration are examples of variables that may affect the system, and they are studied in this paper. Through this study, it was concluded that this biometric identification system needs at least 10 s of data to guarantee that the system learns the essential information. It was also observed that "off-the-person" data acquisition led to a better performance over time, when compared to "on-the-person" places.Distribution system state estimation (DSSE) plays a significant role for the system operation management and control. Due to the multiple uncertainties caused by the non-Gaussian measurement noise, inaccurate line parameters, stochastic power outputs of distributed generations (DG), and plug-in electric vehicles (EV) in distribution systems, the existing interval state estimation (ISE) approaches for DSSE provide fairly conservative estimation results. In this paper, a new ISE model is proposed for distribution systems where the multiple uncertainties mentioned above are well considered and accurately established. Moreover, a modified Krawczyk-operator (MKO) in conjunction with interval constraint-propagation (ICP) algorithm is proposed to solve the ISE problem and efficiently provides better estimation results with less conservativeness. Simulation results carried out on the IEEE 33-bus, 69-bus, and 123-bus distribution systems show that the our proposed algorithm can provide tighter upper and lower bounds of state estimation results than the existing approaches such as the ICP, Krawczyk-Moore ICP(KM-ICP), Hansen, and MKO.In intelligent vehicles, extrinsic camera calibration is preferable to be conducted on a regular basis to deal with unpredictable mechanical changes or variations on weight load distribution. Specifically, high-precision extrinsic parameters between the camera coordinate and the world coordinate are essential to implement high-level functions in intelligent vehicles such as distance estimation and lane departure warning. However, conventional calibration methods, which solve a Perspective-n-Point problem, require laborious work to measure the positions of 3D points in the world coordinate. To reduce this inconvenience, this paper proposes an automatic camera calibration method based on 3D reconstruction. The main contribution of this paper is a novel reconstruction method to recover 3D points on planes perpendicular to the ground. The proposed method jointly optimizes reprojection errors of image features projected from multiple planar surfaces, and finally, it significantly reduces errors in camera extrinsic parameters. Experiments were conducted in synthetic simulation and real calibration environments to demonstrate the effectiveness of the proposed method.Both physiological and neurological mechanisms are reflected in pupillary rhythms via neural pathways between the brain and pupil nerves. This study aims to interpret the phenomenon of motion sickness such as fatigue, anxiety, nausea and disorientation using these mechanisms and to develop an advanced non-contact measurement method from an infrared webcam. Twenty-four volunteers (12 females) experienced virtual reality content through both two-dimensional and head-mounted device interpretations. An irregular pattern of the pupillary rhythms, demonstrated by an increasing mean and standard deviation of pupil diameter and decreasing pupillary rhythm coherence ratio, was revealed after the participants experienced motion sickness. The motion sickness was induced while watching the head-mounted device as compared to the two-dimensional virtual reality, with the motion sickness strongly related to the visual information processing load. In addition, the proposed method was verified using a new experimental dataset for 23 participants (11 females), with a classification performance of 89.6% (n = 48) and 80.4% (n = 46) for training and test sets using a support vector machine with a radial basis function kernel, respectively. selleck compound The proposed method was proven to be capable of quantitatively measuring and monitoring motion sickness in real-time in a simple, economical and contactless manner using an infrared camera.As autonomous navigation is being implemented in several areas including the maritime domain, the need for robust tracking is becoming more important for traffic situation awareness, assessment and monitoring. We present an online repository comprising three designated marine radar datasets from real-world measurement campaigns to be employed for target detection and tracking research purposes. The datasets have their respective reference positions on the basis of the Automatic Identification System (AIS). Together with the methods used for target detection and clustering, a novel baseline algorithm for an extended centroid-based multiple target tracking is introduced and explained. We compare the performance of our algorithm to its standard version on the datasets using the AIS references. The results obtained and some initial dataset specific analysis are presented. The datasets, under the German Aerospace Centre (DLR)'s terms and agreements, can be procured from the company website's URL provided in the article.
Read More: https://www.selleckchem.com/products/cc-115.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.