Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
luation, unlike other incomplete designs that may even result in "better performance".
Diagnostic or procedural coding of clinical notes aims to derive a coded summary of disease-related information about patients. Such coding is usually done manually in hospitals but could potentially be automated to improve the efficiency and accuracy of medical coding. Recent studies on deep learning for automated medical coding achieved promising performances. However, the explainability of these models is usually poor, preventing them to be used confidently in supporting clinical practice. Another limitation is that these models mostly assume independence among labels, ignoring the complex correlations among medical codes which can potentially be exploited to improve the performance.
To address the issues of model explainability and label correlations, we propose a Hierarchical Label-wise Attention Network (HLAN), which aimed to interpret the model by quantifying importance (as attention weights) of words and sentences related to each of the labels. Secondly, we propose to enhance the major deep learnires the correlations among labels. We further discuss the advantages and drawbacks of the overall method regarding its potential to be deployed to a hospital and suggest areas for future studies.Data mining is a powerful tool to reduce costs and mitigate errors in the diagnostic analysis and repair of complex engineered system, but it has yet to be applied systematically to the most complex and socially expensive system - the human body. The currently available approaches of knowledge-based and pattern-based artificial intelligence are unsuited to the iterative and often subjective nature of clinician-patient interactions. Furthermore, current electronic health records generally have poor design and low quality for such data mining. Bayesian methods have been developed to suggest multiple possible diagnoses given a set of clinical findings, but the larger problem is advising the physician on useful next steps. A new approach based on inverting Bayesian inference allows identification of the diagnostic actions that are most likely to disambiguate a differential diagnosis at each point in a patient's work-up. This can be combined with personalized cost information to suggest a cost-effective path to the clinician. Because the software is tracking the clinician's decision-making process, it can provide salient suggestions for both diagnoses and diagnostic tests in standard, coded formats that need only to be selected. This would reduce the need to type in free text, which is prone to ambiguities, omissions and errors. As the database of high-quality records grows, the scope, utility and acceptance of the system should also grow automatically, without requiring expert updating or correction.The paradigm of representation learning through transfer learning has the potential to greatly enhance clinical natural language processing. In this work, we propose a multi-task pre-training and fine-tuning approach for learning generalized and transferable patient representations from medical language. The model is first pre-trained with different but related high-prevalence phenotypes and further fine-tuned on downstream target tasks. Our main contribution focuses on the impact this technique can have on low-prevalence phenotypes, a challenging task due to the dearth of data. We validate the representation from pre-training, and fine-tune the multi-task pre-trained models on low-prevalence phenotypes including 38 circulatory diseases, 23 respiratory diseases, and 17 genitourinary diseases. We find multi-task pre-training increases learning efficiency and achieves consistently high performance across the majority of phenotypes. Most important, the multi-task pre-training is almost always either the best-performing model or performs tolerably close to the best-performing model, a property we refer to as robust. All these results lead us to conclude that this multi-task transfer learning architecture is a robust approach for developing generalized and transferable patient language representations for numerous phenotypes.Electrical medical records are restricted and difficult to centralize for machine learning model training due to privacy and regulatory issues. One solution is to train models in a distributed manner that involves many parties in the process. However, sometimes certain parties are not trustable, and in this project, we aim to propose an alternative method to traditional federated learning with central analyzer in order to conduct training in a situation without a trustable central analyzer. selleckchem The proposed algorithm is called "federated machine learning with anonymous random hybridization (abbreviated as 'FeARH')", using mainly hybridization algorithm to degenerate the integration of connections between medical record data and models' parameters by adding randomization into the parameter sets shared to other parties. Based on our experiment, our new algorithm has similar AUCROC and AUCPR results compared with machine learning in a centralized manner and original federated machine learning.
Worldwide pandemic situations drive countries into high healthcare costs and dangerous conditions. Hospital occupancy rates and medical expenses increase dramatically. Real-time remote health monitoring and surveillance systems with IoT assisted eHealth equipment play important roles in such pandemic situations. To prevent the spread of a pandemic is as crucial as treating the infected patients. The COVID-19 pandemic is the ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
We propose a surveillance system especially for coronavirus pandemic with IoT applications and an inter-WBAN geographic routing algorithm. In this study, coronavirus symptoms such as respiration rate, body temperature, blood pressure, oxygen saturation, heart rate can be monitored and the social distance with 'mask-wearing status' of persons can be displayed with proposed IoT software (Node-RED, InfluxDB, and Grafana).
The geographic routing algorithm is compared with AODV in outdoor areas according to delivery ratio, delay for priority node, packet loss ratio and bit error rate.
My Website: https://www.selleckchem.com/products/BEZ235.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team