Notes
![]() ![]() Notes - notes.io |
Fluoride (F-) and nitrate (NO3-) in groundwater have caused serious health problems worldwide. However, in the Chinese Loess Plateau where groundwater is the primary source of drinking water, previous studies have rarely reported the health risks from fluoride and nitrate in groundwater. Therefore, we collected 105 groundwater samples (78 from shallow aquifers and 27 from deep aquifers) from the western district of the Loess Plateau for physicochemical and isotopic analysis to investigate the sources of F- and NO3- in groundwater and associated health risks. Fluoride concentration in 73.1% of shallow groundwater and 22.2% of deep groundwater exceeds 1.5 mg/L, while NO3- content in 76.3% of shallow groundwater and 51.9% of deep groundwater surpasses 50 mg/L. High-F- groundwater is associated with HCO3-Na, SO4-Na·Mg and Cl-Na·Mg types water. Fluorine-bearing minerals dissolution, cation exchange, calcite precipitation, evaporation, and anthropogenic activities contribute significantly F- in groundwater. Mixing ement of high fluoride or nitrate groundwater in arid areas.An experimental study was carried out to determine the effects of the enrichment of sediments by endocrine perturbators on free-living nematodes from the Ghar El Melh lagoon, Tunisia. For 30 days, four concentrations of Estradiol Benzoate (hereafter EB) (0.43, 4.3, 8.6 and 12.9 ng l-1). The average nematode abundances showed a significant increase after the introduction of EB in their close environment. In contrast, the taxonomic examination has shown a decrease in species diversity of nematodes. The ordination of treatments according to the nMDS showed a clear structural separation of the enriched replicates with EB from controls based on species lists, in particular for concentrations EB3 and EB4. Indeed, under such conditions, the nematofauna exhibited a more remarkable presence of a new record for Science Theristus n. sp. and a decrease in relative abundances of Paracomesoma dubium. On feeding level, a predominance of non-selective deposit-feeders and a decline in proportions of epistrate feeders and carnivorous omnivores was observed with increasing concentrations of EB. Furthermore, in treated replicates with EB, females discernibly showed an increase compared to controls. Overall, EB affect significantly features of meiobenthic nematodes starting from the concentration of 4.3 ng l-1.Elevated levels of contaminants from human activities have become a major threat to animals, particularly within aquatic ecosystems. Selenium (Se) is a naturally occurring element with a narrow range of safe intake, but excessive Se has toxicological effects, as it can bioaccumulate and cause cognitive and behavioural impairments. In this study, we investigated whether exposure to Se would also have transgenerational effects, causing changes in the descendants of exposed individuals. We exposed adult female zebrafish to either a control diet or environmentally relevant concentrations of dietary Se-Met (3.6, 12.8, 34.1 μg Se/g dry weight) for 90 days. Then, females from each treatment group were bred with untreated males, and the offspring (F1-generation) were raised to adulthood (6 months old) without Se exposure. In behavioural tests, offspring that were maternally exposed to 34.1 μg Se/g showed signs of elevated stress, weaker group preferences, and impaired social learning. Maternal exposure to high levels of Se-Met also led to dysregulation of the serotonergic system via changes in mRNA expression of serotonin receptors, including the 5-HT1A, 5-HT1B, and 5-HT1D subtypes, the serotonin transporter, and monoamine oxidase (MAO). Such perturbations in the serotonergic system, thus, appear to underlie the neurobehavioural deficits that we observed. These findings suggest that Se contamination can have important transgenerational consequences on social behaviour and cognition.Presently, the prevalence of antibiotic resistance genes (ARGs) is regarded as an emerging environmental issue, and many studies have illuminated biogeographical patterns of the antibiotic resistome. However, few studies have investigated elevational biogeography and associated assembly mechanisms of ARGs in natural river systems. Accordingly, in the present study, we used metagenomics approaches to analyze the biogeographical pattern of ARGs along the pristine Yarlung Tsangpo River on the Tibetan Plateau. Our study retrieved the baseline profiles of ARGs in the pristine river and showed that the ARGs were dominated by bacA, which was resistant to bacitracin and represented more than 91% of total ARGs. The diversity and abundance of ARGs in the pristine river were lower than those in the human-impacted area, suggesting that the antibiotic resistome evolved and was promoted in a human-impacted environment. Furthermore, an elevational distance-decay relationship of ARGs was observed along the pristine Yarlung Ts of ARGs in a pristine river system, thereby providing important information for public health and environmental management.Salinisation of soil is associated with urban pollution, industrial development and rising sea level. Understanding how high salinity is managed at the plant cellular level is vital to increase sustainable farming output. Previous studies focus on plant stress responses under salinity tolerance. Yet, there is limited knowledge about the mechanisms involved from stress state until the recovery state; our research aims to close this gap. By using the most tolerance genotype (SS1-14) and the most susceptible genotype (SS2-18), comparative physiological, metabolome and post-harvest assessments were performed to identify the underlying mechanisms for salinity stress recovery in plant cells. The up-regulation of glutamine, asparagine and malonic acid were found in recovered-tolerant genotype, suggesting a role in the regulation of panicle branching and spikelet formation for survival. Rice could survive up to 150 mM NaCl (∼15 ds/m) with declined of production rate 5-20% ranged from tolerance to susceptible genotype. see more This show that rice farming may still be viable on the high saline affected area with the right selection of salt-tolerant species, including glycophytes. The salt recovery biomarkers identified in this study and the adaption underlined could be empowered to address salinity problem in rice field.
Website: https://www.selleckchem.com/products/pf-06463922.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team