NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

The Probable Option to FDSOI and FinFET: Optimization of W/La2O3/Si Planar PMOS together with Fourteen nm Gate-Length.
5RF-PM in larval intestines increased with the increase in the microplastic concentration, and the fluorescence values were 0.06, 0.53, and 1.84 and 0.63, 2.32, and 3.45 after exposure to 10, 100, and 500 mg·L-1 10GF-PM and 0.5RF-PM solutions for 0.5 h, and were 0.03, 0.08, and 0.56 and 0.06, 0.41, and 1.56 after transferred larval to clear water for 24 h, respectively. The negative effect of microplastics on zebrafish was related to the concentration and particle sizethe higher the concentration, the lower the embryo hatching rates; the smaller the particle size, the easier it was to accumulate in the intestines.Ammonia volatilization emissions constitute the main pathway of nitrogen loss from paddy systems. Present control technologies are based on reducing the amount of nitrogen fertilizer applied. However, ratio of nitrogen loss through ammonia volatilization emissions has not changed, and it has become a bottleneck for promoting nitrogen use efficiency. Therefore, in order to study the effects of film materials on ammonia volatilization emissions, a two-year field plot experiment was carried out with agricultural waste powder and amphipathic molecule materials spread on surface water after nitrogen fertilizer application in paddy system. The results showed that film materials could reduce nitrogen loss through ammonia volatilization by 19%-31% in the paddy season, and this part of nitrogen was accumulated in soil or assimilated by paddy tissue. The ammonium concentration and pH in the surface water and film materials were the major control factors of ammonia volatilization emissions with nitrogen fertilizer application. Moreover, further reductions in ammonia volatilization emissions could be achieved by film materials after reducing nitrogen fertilizer application. Differences in the effect mechanisms of the film materials provide flexible options for practical agricultural production to meet demands.In order to explore biochar fertilizer addition, two types of industrial wastes (YM) and lees (JZ) and agricultural waste corn stover (JG) were used as the raw materials to make biochar, and the biochar was modified to make smoke-modified biochar (M-YM). The culture test method was used to study the law of ammonia volatilization and phosphorus fixation over a certain period of time with the different fertilizer ratios of the four biochars. We aimed to provide a scientific basis for the agricultural utilization of biochar. The results show that① The cumulative volatilization and volatilization rate of ammonia of the four kinds of biochar with different fertilizer ratios were as followsA1 > A2 > A3 (A12.25 g urea; A22.25g urea +2.25 g chlorination potassium; A32.25 g urea +2.25 g potassium dihydrogen phosphate). The addition of potassium chloride and potassium dihydrogen phosphate in urea reduced ammonia volatilization, and the cumulative ammonia volatilization and volatilization rate of different biochars under all chemical fertilizer ratios was JZ > M-YM > YM > JG; ② The amount of phosphorus by biochars fixation under the B1, B2, and B3 treatments (B10.4 g potassium dihydrogen phosphate; B20.4 g potassium dihydrogen phosphate +0.3 g urea; B30.4 g potassium dihydrogen phosphate +0.3 g potassium chloride) all increased and then decreased. Then, the fixation amount of phosphorus not significantly changed in period from 30th to 60th day. Among four biochar, the fixation rate of phosphorus was the highest under the B1 treatment.With the ratios of B1, B2, and B3 fertilizers, the order of the fixation rate of the four biochars to phosphorus wasM-YM > YM > JG > JZ. JQ1 mouse Therefore, in order to reduce the volatilization of ammonia in nitrogen fertilizers in agricultural fertilization, potassium chloride and potassium dihydrogen phosphate can be added to urea. At the same time, in the fixation of phosphorus, increasing the particle size of biochar may weaken the phosphorous fixation ability.The adjustment of the C/N ratio by straw combined with fertilizer nitrogen (N) not only affects straw decomposition but also affects soil organic carbon (SOC) decomposition, i.e. the priming effects. Therefore, it is doubly important to study how the ratios of straw to N fertilizer influence the release of endogenous and exogenous C for greenhouse gas emission reduction and soil fertility improvement. We conducted a 32-week laboratory incubation experiment with 13C labeled maize straw under different N levels in farmland soil collected from fields in Huantai County to investigate the effect of the ratios of straw to N fertilizer on straw decomposition and the priming effects. Four treatments were set up, including CK, corn straw (S), corn straw+low urea rates (SN1), and corn straw+high urea rates (SN2). Dynamic sampling was conducted during the early stage (0-10 d), the middle stage (11-43 d), and the later stage (44-224 d) of straw decomposition. The approach was based on using a two-source mixing model to de decomposition of endogenous SOC, and then influenced soil C fixation. Over the whole incubation period, straw C retention could not compensate for CO2 released by the priming effects, which led to a net loss of SOC.In order to investigate the response of soil respiration, soil microbial biomass carbon and nitrogen, and hydrothermal factors to the addition of biochar and straw, we used an LI-8100 soil carbon flux meter (LI-COR, Lincoln, USA) to study changes in soil respiration and microbial biomass under four treatmentsconventional fertilization (CK), conventional fertilization +2.25t·hm-2 biochar-C (T1), conventional fertilizer +2.25t·hm-2 straw-C (T2), and conventional fertilizer +2.25t·hm-2 (biochar-C+straw-C), biochar-Cstraw-C=11 (T3). The results showed that① the addition of biochar and straw significantly increased the soil respiration rate and total CO2 emissions, with the largest increase in T3 and the smallest increase in T1. The effect of T1 on soil respiration was promoted in the early stage and later inhibited. ② The microbial biomass carbon and nitrogen and the number of functional bacterial colonies increased significantly with biochar and straw amendments. T1 had a significant promotion effect on nitrogen-fixing bacteria, while T2 had no significant effect on the number of fungi, and T3 showed a positive interaction effect.
Read More: https://www.selleckchem.com/products/jq1.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.