Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The identification of chronic pain and neuropathic pain as common contributors to the overall pain experience of patients with sickle cell disease (SCD) has altered the way we should evaluate difficult-to-treat pain. The recognition of these 2 entities is not generally routine among various medical specialties and provider levels that treat SCD. Due to the relative recency with which neuropathic pain was first described in SCD, validated assessment tools and evidence-based treatments remain lacking. Although clinical assessment and judgment must continue to inform all decision making in this understudied area of SCD pain management, a number of validated neuropathic pain assessment tools exist that can make possible a standardized evaluation process. Similarly, investigation of available neuropathic pain treatments for the uniquely complex pain phenotypes of SCD has only just begun and is better established in pain conditions other than SCD. The aim of this review is to briefly summarize the proposed basic pathophysiology, assessment, and treatment of neuropathic pain in patients with SCD. Furthermore, the aim of this review is to encourage an expanded framework for the assessment and treatment of SCD pain that appreciates the hidden complexities of this common complication of SCD.The aggressive peripheral T-cell lymphomas (PTCLs) are a heterogenous group of uncommon lymphomas of mature T lymphocytes dominated by 3 subtypes systemic anaplastic large-cell lymphoma, both anaplastic lymphoma kinase positive and negative; nodal PTCL with T-follicular helper phenotype; and PTCL, not otherwise specified. Although the accurate diagnosis of T-cell lymphoma and the subtyping of these lymphomas may be challenging, there is growing evidence that knowledge of the subtype of disease can aid in prognostication and in the selection of optimal treatments, in both the front-line and the relapsed or refractory setting. This report focuses on the 3 most common subtypes of aggressive PTCL, to learn how current knowledge may dictate choices of therapy and consultative referrals and inform rational targets and correlative studies in the development of future clinical trials. Finally, I note that clinical-pathologic correlation, especially in cases of T-cell lymphomas that may present with an extranodal component, is essential in the accurate diagnosis and subsequent treatment of our patients.Chemoresistance remains a challenging clinical problem in the treatment of many lymphoma patients. Epigenetic derangements have been implicated in both intrinsic and acquired chemoresistance. Mutations in epigenetic processes shift entire networks of signaling pathways. They influence tumor suppressors, the DNA-damage response, cell-cycle regulators, and apoptosis. Selleck (E/Z)-BCI Epigenetic alterations have also been implicated in contributing to immune evasion. Although increased DNA methylation at CpG sites is the most widely studied alteration, increased histone methylation and decreased histone acetylation have also been implicated in stem-like characteristics and highly aggressive disease states as demonstrated in both preclinical models of lymphoma and patient studies. These changes are nonrandom, occur in clusters, and are observed across many lymphoma subtypes. Although caution must be taken when combining epigenetic therapies with other antineoplastic agents, epigenetic therapies have rarely induced clinical meaningful responses as single agents. Epigenetic priming of chemotherapy, targeted therapies, and immunotherapies in lymphoma patients may create opportunities to overcome resistance.Venous thromboembolism (VTE; deep vein thrombosis and/or pulmonary embolism) is a well-established cause of morbidity and mortality in the medical and surgical patient populations. Clinical research in the prevention and treatment of VTE has been a dynamic field of study, with investigations into various treatment modalities ranging from mechanical prophylaxis to the direct oral anticoagulants. Aspirin has long been an inexpensive cornerstone of arterial vascular disease therapy, but its role in the primary or secondary prophylaxis of VTE has been debated. Risk-benefit tradeoffs between aspirin and anticoagulants have changed, in part due to advances in surgical technique and postoperative care, and in part due to the development of safe, easy-to-use oral anticoagulants. We review the proposed mechanisms in which aspirin may act on venous thrombosis, the evidence for aspirin use in the primary and secondary prophylaxis of VTE, and the risk of bleeding with aspirin as compared with anticoagulation.The management of Waldenström macroglobulinemia (WM) has evolved tremendously with recent genomic discoveries that correlate with clinical presentation and could help to tailor treatment approaches. The current diagnosis of WM requires clinicopathological criteria, including bone marrow involvement by lymphoplasmacytic lymphoma cells, a serum immunoglobulin M (IgM) monoclonal paraprotein, and presence of the MYD88 L265P mutation. Once the diagnosis is established, the relationship between the patient's symptoms and WM should be carefully investigated, because therapy should be reserved for symptomatic patients. Bone marrow involvement and serum levels of IgM, albumin, and β2-microglobulin can be used to estimate the time until treatment initiation. The treatment of WM patients should be highly personalized, and the patient's clinical presentation, comorbidities, genomic profile, and preferences, as well as toxicity of the treatment regimens, should be taken into account. Alkylating agents (bendamustine, cyclophosphamide), proteasome inhibitors (bortezomib, carfilzomib, ixazomib), anti-CD20 monoclonal antibodies (rituximab, ofatumumab), and Bruton tyrosine kinase (BTK) inhibitors (ibrutinib, acalabrutinib, zanubrutinib) are safe and highly effective treatment options in patients with WM. Because novel covalent and noncovalent BTK inhibitors (tirabrutinib, vecabrutinib, LOXO-305, ARQ-531), BCL2 antagonists (venetoclax), and CXCR4-targeting agents (ulocuplumab, mavorixafor) are undergoing clinical development in WM, the future of WM therapy certainly appears bright and hopeful.
Read More: https://www.selleckchem.com/products/dual-specificity-protein-phosphatase-1-6-Inhibitor-bcl.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team