Notes
![]() ![]() Notes - notes.io |
This innovative application of database clustering clinical features could advance identification of patients with rare and common genetic conditions and detect with high accuracy the natural history of patients harboring similar genetic pathogenic variants.
This innovative application of database clustering clinical features could advance identification of patients with rare and common genetic conditions and detect with high accuracy the natural history of patients harboring similar genetic pathogenic variants.
Cystic fibrosis (CF), caused by pathogenic variants in the CF transmembrane conductance regulator (CFTR), affects multiple organs including the exocrine pancreas, which is a causal contributor to cystic fibrosis-related diabetes (CFRD). Untreated CFRD causes increased CF-related mortality whereas early detection can improve outcomes.
Using genetic and easily accessible clinical measures available at birth, we constructed a CFRD prediction model using the Canadian CF Gene Modifier Study (CGS; n = 1,958) and validated it in the French CF Gene Modifier Study (FGMS; n = 1,003). We investigated genetic variants shown to associate with CF disease severity across multiple organs in genome-wide association studies.
The strongest predictors included sex, CFTR severity score, and several genetic variants including one annotated to PRSS1, which encodes cationic trypsinogen. The final model defined in the CGS shows excellent agreement when validated on the FGMS, and the risk classifier shows slightly better performance at predicting CFRD risk later in life in both studies.
We demonstrated clinical utility by comparing CFRD prevalence rates between the top 10% of individuals with the highest risk and the bottom 10% with the lowest risk. A web-based application was developed to provide practitioners with patient-specific CFRD risk to guide CFRD monitoring and treatment.
We demonstrated clinical utility by comparing CFRD prevalence rates between the top 10% of individuals with the highest risk and the bottom 10% with the lowest risk. A web-based application was developed to provide practitioners with patient-specific CFRD risk to guide CFRD monitoring and treatment.
Multiple efforts are underway to increase the inclusion of racial minority participants in genomic research and new forms of individualized medicine. These efforts should include studies that characterize how individuals from minority communities experience genomic medicine in diverse health-care settings and how they integrate genetic knowledge into their understandings of health-care needs.
As part of a large, multisite genomic sequencing study, we surveyed individuals to assess their decision to pursue genomic risk evaluation. Participants included Latino patients recruited at Mountain Park Health Center, a Federally Qualified Health Center in Phoenix, Arizona, and non-Latino patients recruited at a large academic medical center (Mayo Clinic in Rochester, MN). Both groups agreed to receive individualized genomic risk assessments.
Comparisons between cohorts showed that Latino respondents had lower levels of decisional conflict about pursuing genomic screening but generally scored lower on genetic knowledge. Latino respondents were also more likely to have concerns about the misuse of genomic information, despite both groups having similar views about the value of genomic risk evaluation.
Our results highlight the importance of evaluating sociocultural factors that influence minority patient engagement with genomic medicine in diverse health-care settings.
Our results highlight the importance of evaluating sociocultural factors that influence minority patient engagement with genomic medicine in diverse health-care settings.
Host genetic variants may contribute to severity of COVID-19. Epigenetic activity NKG2C
NK cells are potent antiviral effector cells, potentially limiting the extent of SARS-CoV-2 infections. NKG2C is an activating NK cell receptor encoded by the KLRC2 gene, which binds to HLA-E on infected cells leading to NK cell activation. Heterozygous or homozygous KLRC2 deletion (KLRC2
) may naturally occur and is associated with a significantly lower or absent NKG2C expression level. In addition, HLA-E*0101/0103 genetic variants occur, caused by a single-nucleotide polymorphism. We therefore investigated whether the severity of COVID-19 is associated with these genetic variants.
We investigated the distribution of KLRC2 deletion and HLA-E*0101/0103 allelic variants in a study cohort of 361 patients with either mild (N = 92) or severe (N = 269) COVID-19.
Especially the KLRC2
, and at a lower degree the HLA-E*0101, allele were significantly overrepresented in hospitalized patients (p = 0.0006 and p = 0.01), particularly in patients requiring intensive care (p < 0.0001 and p = 0.01), compared with patients with mild symptoms. Both genetic variants were independent risk factors for severe COVID-19.
Our data show that these genetic variants in the NKG2C/HLA-E axis have a significant impact on the development of severe SARS-CoV-2 infections, and may help to identify patients at high-risk for severe COVID-19.
Our data show that these genetic variants in the NKG2C/HLA-E axis have a significant impact on the development of severe SARS-CoV-2 infections, and may help to identify patients at high-risk for severe COVID-19.
To characterize the genetic architecture of left ventricular noncompaction (LVNC) and investigate the extent to which it may represent a distinct pathology or a secondary phenotype associated with other cardiac diseases.
We performed rare variant association analysis with 840 LVNC cases and 125,748 gnomAD population controls, and compared results to similar analyses on dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM).
We observed substantial genetic overlap indicating that LVNC often represents a phenotypic variation of DCM or HCM. In contrast, truncating variants in MYH7, ACTN2, and PRDM16 were uniquely associated with LVNC and may reflect a distinct LVNC etiology. In particular, MYH7 truncating variants (MYH7tv), generally considered nonpathogenic for cardiomyopathies, were 20-fold enriched in LVNC cases over controls. MYH7tv heterozygotes identified in the UK Biobank and healthy volunteer cohorts also displayed significantly greater noncompaction compared with matched controls. RYR2 exon deletions and HCN4 transmembrane variants were also enriched in LVNC, supporting prior reports of association with arrhythmogenic LVNC phenotypes.
Homepage: https://www.selleckchem.com/pharmacological_epigenetics.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team