Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Ex-vivo lung perfusion (EVLP) is an innovative platform for assessing donor lungs in the pre-transplant window. In this study, we demonstrate an extension of its utility by administering the anti-CD20 monoclonal antibody, Rituximab, during EVLP. We hypothesized that this would lead to targeted depletion of allograft B-cells which may provide significant clinical benefit, including the potential to reduce latent Epstein-Barr virus (EBV) and decrease the incidence of post-transplant lymphoproliferative malignancies.
Twenty human donor lungs rejected for transplantation were placed on EVLP with (n=10) or without (n=10) 500mg of Rituximab. Safety parameters such as lung physiology and inflammatory cytokines were evaluated. We measured the delivery efficacy through flow cytometry, immunohistochemistry and ELISA. An in-vitro culture assay, in the presence of complement, was further conducted to monitor whether B-cell depletion would occur in Rituximab-perfused samples.
Rituximab was successfully delivered to eliver monoclonal antibody therapies to treat donor lungs pretransplant with the goal of eliminating a latent virus responsible for considerable morbidity after lung transplantation.
Supported by the University Health Network Transplant Center.
Supported by the University Health Network Transplant Center.
This study explored the mechanisms underlying altered neurobehavioural development of female offspring born to mothers with polycystic ovary syndrome (PCOS).
In total, 20 women with PCOS and 32 healthy women who underwent caesarean deliveries with a single female foetus were recruited. Infants were assessed with Dubowitz scoring. Swan71 cell line with stable FOS overexpression was used to verify the regulatory effects of FOS on brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) expression. Learning and memory in female first-generation (F1) and second-generation (F2) offspring in a rat model of PCOS was tested using the Morris water maze at puberty and adulthood. Transcriptome analysis of pubertal hippocampi and hypothalami of female F1 offspring was conducted.
Total score and behaviour subscales of Dubowitz scoring were significantly lower in female infants of women with PCOS. FOS and NGF protein levels were downregulated in placental villi of the PCOS group. FOS played a key role in BDNF inhibition and enhancing NGF in Swan71 cells. PCOS female F1 rats exhibited lower target crossing times during puberty when compared to controls. Transcriptome analysis revealed significant changes in hippocampal and hypothalamic neuronal pathways in female F1 rats at puberty.
FOS regulation of neurotrophins in the placenta negatively affects neurobehavioural development of female offspring of PCOS mothers.
This study was funded by the National Key R&D Program of China (2018YFC1004900 to F.Q. and F.W.) and the National Natural Science Foundation of China (81874480 to F.Q.; 81873837 to F.W.).
This study was funded by the National Key R&D Program of China (2018YFC1004900 to F.Q. and F.W.) and the National Natural Science Foundation of China (81874480 to F.Q.; 81873837 to F.W.).
The role of vascular endothelium in acute promyelocytic leukaemia (APL) remains unknown. We aimed to investigate the mechanisms by which APL cells interact with endothelial cells (ECs) and to further explore how the endothelium affects bleeding as well as therapeutic interventions.
APL cells and an original APL cell line, NB4 cells, were used for experiments. see more The effects of leukaemic cells on ECs were analyzed in vitro and in vivo. Moreover, the endothelial barrier function and procoagulant activity were detected. An APL mouse model was established for in vivo studies.
APL cells interacted with ECs via ICAM-1 and VCAM-1 receptors to disrupt endothelial integrity. This binding activated MLCK signaling, resulting in the trans-endothelial passage of protein and red blood cells (RBCs). Combined treatment with asiatic acid or anti-adhesion receptor antibody inhibited the response of ECs to APL cells, thereby preventing APL-associated haemorrhage in vitro and in vivo. Activated ECs exhibited a procoagulant phenotype after phosphatidylserine exposure. Plasma from APL patients formed a thin fibrin network between procoagulant ECs, and this intercellular fibrin decreased the passage of albumin and RBCs. Ex vivo addition of fibrinogen further enhanced this barrier function in a dose-dependent manner.
Endothelial damage induced by leukaemic cell adherence promotes haemorrhaging in APL. Stabilization of ECs, decreasing adhesion receptor expression, and increasing fibrinogen transfusion levels may be a new therapeutic avenue to alleviate this fatal bleeding complication.
National Science Foundation of China (81670128, 81873433).
National Science Foundation of China (81670128, 81873433).
A tetravalent live attenuated dengue vaccine, Dengvaxia, sensitised naïve recipients to severe dengue illness upon a subsequent natural dengue infection and is suspected to be due to antibody-dependent enhancement (ADE). ADE has also been implicated in the severe neurological outcomes of Zika virus (ZIKV) infection. It has become evident that cross-reactive antibodies targeting the viral pre-membrane protein and fusion-loop epitope are ADE-competent. A pre-clinical tetravalent dengue sub-unit vaccine candidate, DSV4, eliminates these ADE-competent epitopes.
We compared protective efficacy and ADE-competence of murine polyclonal antibodies induced by DSV4, Dengvaxia and an 'in house' tetravalent mixture of all four laboratory DENV strains, TV DENV, using established mouse models.
DSV4-induced antibodies, known to be predominantly type-specific, provided significant protection against lethal DENV challenge, but did not promote ADE of either DENV or ZIKV infection in vivo. Antibodies elicited by Dengvaxia and TV DENV, which are predominantly cross-reactive, not only failed to offer protection against lethal DENV challenge, but also promoted ADE of both DENV and ZIKV infection in vivo.
Protective efficacy against DENV infection may be linked to the induction of neutralising antibodies which are type-specific rather than cross-reactive. Whole virus-based dengue vaccines may be associated with ADE risk, despite their potent virus-neutralising capacity. Vaccines designed to eliminate ADE-competent epitopes may help eliminate/minimise ADE risk.
This study was supported partly by ICGEB, India, the National Biopharma Mission, DBT, Government of India, Sun Pharmaceutical Industries Limited, India, and NIAID, NIH, USA.
This study was supported partly by ICGEB, India, the National Biopharma Mission, DBT, Government of India, Sun Pharmaceutical Industries Limited, India, and NIAID, NIH, USA.
Read More: https://www.selleckchem.com/products/LY2228820.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team