Notes
![]() ![]() Notes - notes.io |
Using a combination of small-angle neutron scattering (SANS) and dynamic light scattering (DLS), we probed subtle differences in the aggregation mechanism for PNIPAM- and PNPOZ-decorated silica nanoparticles. The nanoparticles decorated with PNIPAM and PNPOZ show similar aggregation mechanism that was independent of polymer structure, whereby aggregation starts by the formation of small aggregates. A further increase in temperature leads to interaction between these aggregates and results in full-scale aggregation and subsequent phase separation.
The structure, rheology and other physicochemical properties of dilute aqueous dispersions of sodium oleate (NaOL) are well known. This paper is the first report in which a moderately concentrated (13% w/w) dispersion of NaOL in water is investigated. In fact, at this concentration the phase and rheology behavior of the surfactant remarkably deviates from those of its dilute solutions in water and a significant effect is imparted by the addition of potassium chloride.
The structural, thermal and rheological properties of a 13% w/w dispersion of NaOL in water were investigated by cryo-TEM, rheology, and DSC experiments with and without the addition of potassium chloride. The system is comprised of elongated wormlike micelles that turn into a gel-like more disordered viscous material upon addition of small amounts of KCl (4% w/w).
This paper illustrates the multifaceted behavior of sodium oleate dispersions at intermediate concentrations that depends on the presence of other cosolutes (such as KCl). The results show that viscoelastic aqueous dispersions of NaOL are excellent candidates for the preparation of stimuli-responsive green materials to be used in a number of different applications. We also discuss the genesis of wormlike micelles (WLMs) in terms of the general theory of self-assembly.
This paper illustrates the multifaceted behavior of sodium oleate dispersions at intermediate concentrations that depends on the presence of other cosolutes (such as KCl). The results show that viscoelastic aqueous dispersions of NaOL are excellent candidates for the preparation of stimuli-responsive green materials to be used in a number of different applications. We also discuss the genesis of wormlike micelles (WLMs) in terms of the general theory of self-assembly.Dopant engineering in nanostructured materials is an effective strategy to enhance electrochemical performances via regulating the electronic structures and achieving more active sites. In this work, a robust electrode based on Fe and Mn co-doped Co3S4 (FM-Co3S4) ultrathin nanosheet arrays (NSAs) on the Ni foam substrate is prepared through a facile hydrothermal method followed by a subsequent sulfurization reaction. It has been found that the incorporation of Fe ions is beneficial to higher specific capacity of the final electrode and Mn ions contribute to the excellent rate capability in the reversible redox processes. Density functional theory (DFT) calculations further verify that the Mn doping in the Co3S4 obviously shorten the energy gap of Co3S4, which favors the electrochemical performances. Due to the synergetic effects of different transition metal ions, the as-prepared FM-Co3S4 ultrathin NSAs exhibit a high specific capacity of 390 mAh g-1 at 5 A g-1, as well as superior rate capability and excellent cycling stability. Moreover, the corresponding quasi-solid-state hybrid supercapacitors constructed with the FM-Co3S4 ultrathin NSAs and active carbon exhibit a high energy density of 55 Wh kg-1 at the power density of 752 W kg-1. These findings demonstrate a new platform for developing high-performance electrodes for energy storage applications.Transition metal chalcogenides are considered as promising alternative materials for lithium-ion batteries owing to their relatively high theoretical capacity. However, poor cycle stability combined with low rate capacity still hinders their practical applications. In this work, the Cu-N chemical bonding directed the stacking Cu2-xSe nanoplates (DETA-Cu2-xSe) is developed to solve this issue. Such unique structure with small nanochannels can enhance the reactive site, facilitate the Li-ion transport as well as inhibit the structural collapse. Benefitting of these advantages, the DETA-Cu2-xSe exhibits high specific capacity, better rate capacity and long cyclability with the specific capacities of 565mAhg-1 after 100 cycles at 200 mA g-1 and 368mAhg-1 after 500 cycles at 5000 mA g-1. This novel DETA-Cu2-xSe structure with nanochannels is promising for next generation energy storage and the synthetic process can be extended to fabricate other transition metal chalcogenides with similar structure.Single-atom catalysts (SACs) have attracted enormous attentions in heterogeneous catalysts due to the maximized atomic utilization and extraordinary catalytic performance. Similar to homogeneous catalytic ligands, the support in SACs plays a vital role in the catalytic properties. Herein, we present a series of transition-metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Os, Ir and Pt) anchored on a vanadium diselenide (VSe2) monolayer as electrocatalysts through density functional theory calculations. Pd@VSe2 stands out among the considered SACs with a low overpotential of 0.38 V, exhibiting the excellent performance of oxygen reduction reaction (ORR). Meanwhile, a liner trend between the adsorption Gibbs free energy of the OH (ΔGOH*) and the predicted ηORR is revealed, which may serve as a simple descriptor for the inherent ORR catalytic activity of SACs. Particularly, Pt@VSe2 shows extraordinarily low theoretical overpotential of -0.04/0.47 V for hydrogen/oxygen evolution reaction, which transcends the state-of-the-art Pt and IrO2 and thereby can be exploited as highly-efficient bifunctional electrocatalyst for overall water splitting. This work broadens the perception of designing multifunctional electrocatalysts based on two-dimensional VSe2 material and offers a new paradigm for investigating advanced SACs.
Depending on their composition, hydrated gels can be homogeneous or phase-separated, which, in turn, affects their dynamical and mechanical properties. However, the nature of the structural features, if any, that govern the propensity for a given gel to phase-separate remains largely unknown. GSK3368715 concentration Here, we argue that the propensity for hydrated gels to phase-separate is topological in nature.
We employ reactive molecular dynamics simulations to model the early-age precipitation of calcium-alumino-silicate-hydrate (CASH) gels with varying compositions, i.e., (CaO)
(Al
O
)
(SiO
)
(H
O)
. By adopting topological constraint theory, we investigate the structural origin of phase separation in hydrated gels.
We report the existence of a homogeneous-to-phase-separated transition, wherein Si-rich (x≤0.10) CASH gels are homogeneous, whereas Al-rich (x>0.10) CASH gels tend to phase-separate. Furthermore, we demonstrate that this transition is correlated to a topological flexible-to-rigid transition within the atomic network.
Homepage: https://www.selleckchem.com/products/gsk3368715.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team