Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
408, 95% CI [1.875, 3.093]); and having good versus fair/poor physical health (AOR = 1.337, 95% CI [1.087, 1.646]). These characteristics may be useful to create personalized pain management protocols that include exercise for older adults with pain.
In response to conflicting findings for activity levels across sociodemographic groups, this study examined differences in adolescents' in-school, out-of-school, and weekend physical activity (PA) by sociodemographic subgroups using representative US data.
Data were obtained from the Family Life, Activity, Sun, Health, and Eating study. Multiple regression models compared in-school, out-of-school, and weekend PA by gender and race/ethnicity, and examined potential modification of associations by grade (middle vs high school) and socioeconomic status (lower vs higher).
Final analytic sample was 1413 adolescents (Mean age = 14.5y, 51.3% female, 64.5% white). Compared with whites, in-school PA was significantly higher among blacks and those classified as other race/ethnicity for middle school (69.8 and 71.0, respectively, vs 66.4min/d), and among Hispanics for high school (52.7 vs 48.4min/d). Hispanics' (vs whites') out-of-school PA was significantly lower for middle school (63.7 vs 66.6min/d), but higher for high school (54.0 vs 51.8min/d). In-school PA was significantly higher among adolescents of lower (vs higher) socioeconomic status among males and Hispanics (all Ps < .05).
The relation of race/ethnicity with PA varies by grade and time of day/week. Socioeconomic status findings contradict previously reported findings. Efforts to increase PA based on sociodemographic disparities should consider potential interaction effects.
The relation of race/ethnicity with PA varies by grade and time of day/week. Socioeconomic status findings contradict previously reported findings. Efforts to increase PA based on sociodemographic disparities should consider potential interaction effects.Illusory contours (ICs) are borders that are perceived in the absence of contrast gradients. Until recently, IC processes were considered exclusively visual in nature and presumed to be unaffected by information from other senses. Electrophysiological data in humans indicates that sounds can enhance IC processes. Despite cross-modal enhancement being observed at the neurophysiological level, to date there is no evidence of direct amplification of behavioural performance in IC processing by sounds. Ac-DEVD-CHO concentration We addressed this knowledge gap. Healthy adults ( n = 15) discriminated instances when inducers were arranged to form an IC from instances when no IC was formed (NC). Inducers were low-constrast and masked, and there was continuous background acoustic noise throughout a block of trials. On half of the trials, i.e., independently of IC vs NC, a 1000-Hz tone was presented synchronously with the inducer stimuli. Sound presence improved the accuracy of indicating when an IC was presented, but had no impact on performance with NC stimuli (significant IC presence/absence × Sound presence/absence interaction). There was no evidence that this was due to general alerting or to a speed-accuracy trade-off (no main effect of sound presence on accuracy rates and no comparable significant interaction on reaction times). Moreover, sound presence increased sensitivity and reduced bias on the IC vs NC discrimination task. These results demonstrate that multisensory processes augment mid-level visual functions, exemplified by IC processes. Aside from the impact on neurobiological and computational models of vision, our findings may prove clinically beneficial for low-vision or sight-restored patients.Should the vestibular system be counted as a sense? This basic conceptual question remains surprisingly controversial. While it is possible to distinguish specific vestibular organs, it is not clear that this suffices to identify a genuine vestibular sense because of the supposed absence of a distinctive vestibular personal-level manifestation. The vestibular organs instead contribute to more general multisensory representations, whose name still suggest that they have a distinct 'sensory' contribution. The vestibular case shows a good example of the challenge of individuating the senses when multisensory interactions are the norm, neurally, representationally and phenomenally. Here, we propose that an additional metacognitive criterion can be used to single out a distinct sense, besides the existence of specific organs and despite the fact that the information coming from these organs is integrated with other sensory information. We argue that it is possible for human perceivers to monitor information coming from distinct organs, despite their integration, as exhibited and measured through metacognitive performance. Based on the vestibular case, we suggest that metacognitive awareness of the information coming from sensory organs constitutes a new criterion to individuate a sense through both physiological and personal criteria. This new way of individuating the senses accommodates both the specialised nature of sensory receptors as well as the intricate multisensory aspect of neural processes and experience, while maintaining the idea that each sense contributes something special to how we monitor the world and ourselves, at the subjective level.It has been repeatedly suggested that synesthesia is intricately connected with unusual ways of exercising one's mental imagery, although it is not always entirely clear what the exact connection is. My aim is to show that all forms of synesthesia are forms of (often very different kinds of) mental imagery and, further, if we consider synesthesia to be a form of mental imagery, we get significant explanatory benefits, especially concerning less central cases of synesthesia where the inducer is not sensory stimulation.Sensory Substitution Devices (SSDs) are typically used to restore functionality of a sensory modality that has been lost, like vision for the blind, by recruiting another sensory modality such as touch or audition. Sensory substitution has given rise to many debates in psychology, neuroscience and philosophy regarding the nature of experience when using SSDs. Questions first arose as to whether the experience of sensory substitution is represented by the substituted information, the substituting information, or a multisensory combination of the two. More recently, parallels have been drawn between sensory substitution and synaesthesia, a rare condition in which individuals involuntarily experience a percept in one sensory or cognitive pathway when another one is stimulated. Here, we explore the efficacy of understanding sensory substitution as a form of 'artificial synaesthesia'. We identify several problems with previous suggestions for a link between these two phenomena. Furthermore, we find that sensory substitution does not fulfil the essential criteria that characterise synaesthesia.
Homepage: https://www.selleckchem.com/products/ac-devd-cho.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team