Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Herein, the in vitro protein digestibility of lyophilized Protaetia brevitarsis larvae flour with and without defatting using 70% ethanol was compared with beef loin. Proximate analysis showed that the defatted larvae contained the highest protein content (p less then 0.05). The viable counts of total aerobic bacteria, Escherichia coli, and coliform bacteria decreased significantly after defatting the larval samples with 70% ethanol (p less then 0.05). Measurement of α-amino group content and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed higher amounts of low molecular weight proteins in the larvae compared to beef loin (p less then 0.05). After in vitro digestion, the degree of protein hydrolysis of the digesta was higher for both larvae samples compared to beef loin (p less then 0.05). No change was observed in the in vitro larval protein digestibility after defatting. These results highlight the excellent protein digestibility of P. brevitarsis larvae with high protein content. Defatting insect flour with 70% ethanol could enhance microbial safety while maintaining excellent protein digestibility.This feeding trial was conducted to investigate the effects of Mentha arvensis (MA) and Geranium thunbergii (GT) in drinking water on physicochemical attributes, sensory qualities, proximate analysis and oxidative stability of broiler leg meat. One hundred and twenty broiler chicks were assigned to 1 of 4 dietary treatments for 5 weeks. The dietary treatments were 1) control, 2) T1 (0.1% 1 MA1 GT), 3) T2 (0.1% 1 MA4 GT), 4) T3 (0.1% 4 MA 1 GT). The water holding capacity and cooking loss were improved (p less then 0.05) in T2 and T3. The flavor, texture and acceptability of leg meat by consumers were significantly increased in T2 relative to the control (p less then 0.05). The crude protein content was increased in T3 while the crude fat decreased in T2 (p less then 0.05). RO4929097 price Moreover, broilers supplemented with plant extracts had the lowest leg meat TBARS (thiobarbituric acid reactive substances) values after 2 weeks of storage as compared with the control. Total phenolic contents and 1-1-diphenyl 2 picrylhydrazyl (DPPH) activity were also better in the T2 group (p less then 0.05) compared with the control, whereas 2,2-Azinobis-3 ethytlbenzothiazoline-6-sulfonic acid (ABTS+) remained unaffected. Overall, these results demonstrate that broiler drinking water with the inclusion of plant extract combination can be used to enhance the oxidative stability, shelf life and quality characteristics of broiler leg meat without compromising the growth performance.The aim of this study was to develop retorted samgyetang marinated with different levels of soy sauce and processed at different F0 (thermal death time at 121°C) values. The tested marinade series comprised different percentages of soy sauce in water (0%, 25%, and 50% [w/w]) containing a fixed concentration of sodium tripolyphosphate (0.3% [w/w]). Following marination, samgyetang was prepared and subjected to retort processing, until an F0 value of either 8 or 29 was achieved. Meat quality analysis of the breast meat, sensory evaluation, and aroma analysis were performed as indicators of acceptability. The meat pH decreased as the soy sauce content increased, regardless of the F0 value. The shear force value significantly decreased as the concentration of soy sauce increased, but increased as the F0 value increased (p less then 0.05). Lipid oxidation was not affected by marination, but increased significantly as the F0 value increased (p less then 0.05). The proportion of polyunsaturated fatty acids decreased significantly (p less then 0.05) as the F0 value increased. The total alkane content decreased as the F0 value increased (p less then 0.05). Changes in the total volatile sulfur compound and 2-butyl-1-octanol content were affected by soy sauce marination. Marination using 25% soy sauce and retort sterilization, until an F0 value of either 8 or 29 was achieved, improved the acceptability of samgyetang. Therefore, marination using 25% soy sauce and retort sterilization until an F0 value of 8 is the process recommended for developing a soy sauce-flavored, retorted samgyetang product of acceptable quality.Synthetic nitrite imparts a reddish-pink color to meat and a distinct flavor to meat products, delays lipid oxidation, and inhibits microbial growth and pathogens. However, excessive intake of nitrite might result in the production of carcinogenic nitrosamine, which might increase the risk of cancer in humans. Therefore, we aimed to find an alternative natural colorant for pork sausages. Pork sausages were mixed with 0.014% sodium nitrite (NaNO2) alone (CON), without either NaNO2 or purple-fleshed sweet potato powder (PP; CON1), 0.5% PP alone (PP1), 1% PP (PP2) alone, 0.011% NaNO2 and 0.5% PP (SP1), and 0.011% NaNO2 and 1% PP (SP2). The sausages were then cooked and stored for physicochemical analysis on days 0, 5, 10, 15, and 20. The a* and W* values were the greatest and lowest in the SP2 and CON1 treatments, respectively (p PP1, CON1. The fatty acid content was higher, and flavorous amino acids were more in PP2 (p less then 0.05). The fatty acid composition was comparable between the SP2 and CON groups, but the contents of glutamic acid and alanine were greater in the SP2 group. In conclusion, SP2 (0.011% NaNO2 with 1% PP) could be added as a natural colorant for pork sausage production, and NaNO2 could be substituted with up to 20% PP without detrimental effects on sausage appearance and/or quality.This study evaluated the quality characteristics of crust derived from dry-aged Holstein and Hanwoo loins and their effects on food as additives. With respect to physicochemical properties, we examined the proximate composition, pH value, salinity, color, water and fat absorption, emulsifying capacity, and swelling yield. The protein and ash contents in the Holstein crust were significantly higher than those in the Hanwoo crust (p less then 0.0001). The fat content in the Hanwoo crust was significantly higher than that in the Holstein crust (p less then 0.01). The salinity, lightness, and yellowness of the Hanwoo crust were significantly lower than those of the Holstein crust (p less then 0.001). Furthermore, the pH value and emulsifying capacity of the Hanwoo crust were significantly higher than those of the Holstein crust (p less then 0.001). The fat absorption of the Holstein crust was significantly higher than that of the Hanwoo crust (p less then 0.001). The swelling yield of the Holstein crust was significantly higher than that of the Hanwoo crust at pH 3 and 4 (p less then 0.
Website: https://www.selleckchem.com/products/RO4929097.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team