Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Gut microbiota dysbiosis, associated with insulin resistance, weak intestinal barrier integrity, and inflammation, may also play a role in the development of dietary-induced nonalcoholic fatty liver disease (NAFLD). This study investigates the effects of dietary Lactobacillus plantarum NA136 administration on gut microbiota composition in an insulin-resistant C57BL/6J mouse NAFLD model. Selleckchem KYA1797K Comparison of mice with and without L. plantarum NA136 treatment revealed that L. plantarum NA136 treatment not only relieved insulin resistance but also significantly increased relative proportions of Desulfovibrio, Alistipes, Prevotella, and Enterorhabdus in gut microbiota of NAFLD mice. Meanwhile, L. plantarum NA136 administration also inhibited pathogenic bacterial growth, while promoting growth of probiotics such as Allobaculum, Lactobacillus, and, most markedly, Bifidobacterium. Moreover, L. plantarum NA136 treatment of NAFLD mice improved intestinal barrier integrity and attenuated high-fat and fructose diet (HFD/F)-induced inflammation. These results implicate gut-liver-axis-dependent microbiota modulation as the underlying mechanism for L. plantarum NA136-induced amelioration of NAFLD.Key points• L. plantarum NA136 corrects gut microbiota disorders caused by a high-fat and fructose diet. • L. plantarum NA136 strengthens the intestinal barrier and reduces inflammation in the liver. • L. plantarum NA136 relieves NAFLD by improving the gut-liver axis.INTRODUCTION Up to one third of total joint replacement patients (TJR) experience poor surgical outcome. OBJECTIVES To identify metabolomic signatures for non-responders to TJR in primary osteoarthritis (OA) patients. METHODS A newly developed differential correlation network analysis method was applied to our previously published metabolomic dataset to identify metabolomic network signatures for non-responders to TJR. RESULTS Differential correlation networks involving 12 metabolites and 23 metabolites were identified for pain non-responders and function non-responders, respectively. CONCLUSION The differential networks suggest that inflammation, muscle breakdown, wound healing, and metabolic syndrome may all play roles in TJR response, warranting further investigation.INTRODUCTION Traditional herbal medicine (THM) contains a vast number of natural compounds with varying degrees of pharmacological activity. To elucidate the mode of action, comprehensive metabolite profiling in the plasma before and after administration of THM is essential. OBJECTIVE The aim of this study was to explore and identify/annotate converted metabolites after administration of THM in humans. METHODS We performed untargeted metabolome analysis of human plasma collected before and after administration of maoto (ma-huang-tang), a traditional Japanese Kampo medicine. Maoto-derived metabolites were then selected and annotated following the DAC-Met strategy, which is an annotation method that uses mass differences of major metabolic reactions among the detected peaks and a differential network analysis. RESULTS About 80% of maoto-derived components were found to be converted forms. Following DAC-Met, the structures of 15 previously unidentified metabolites were determined, and five of these were later confirmed with authentic standards. Using published literature, we also reconstructed the metabolic pathway of maoto components in humans. A kinetic time-course analysis revealed their diverse kinetic profiles. CONCLUSION The results demonstrated that time-resolved comprehensive metabolite profiling in plasma using the DAC-Met strategy is highly useful for elucidating the complex nature of THM.BACKGROUND Additional prognostic factors and personalized therapeutic alternatives for vulvar squamous cell carcinoma (VSCC), especially for advanced stages with poor prognosis, are urgently needed. OBJECTIVES To review and assess literature regarding underlying molecular mechanisms of VSCC target therapeutic and prognostic approaches. METHODS We performed a narrative literature review from the inception of the database up to January 2020 limited to English language, organizing knowledge in five main fields extracellular and intracellular cell cycle deregulation, tumor immune microenvironment, tumor angiogenesis and hormones. RESULTS EGFR immunohistochemical overexpression/gene amplification, representing early events in VSCC carcinogenesis, have been correlated with a worse prognosis and led to inclusion of erlotinib in cancer guidelines. p16 expression and HPV positivity are linked to a better prognosis, while p53 overexpression is linked to a worse prognosis; thus, biomarkers could help tailoring conventional treatment and follow-up. The implications of PD-L1 positivity in reference to HPV status and prognosis are still not clear, even though pembrolizumab is part of available systemic therapies. The role of tumor angiogenesis emerges through data on microvessel density, immunohistochemical VEGF staining and evaluation of serum VEGF concentrations. Few data exist on hormonal receptor expression, even though hormonal therapy showed great manageability. CONCLUSIONS We suggest adding p16, p53 and HPV status to routine hystopathological examination of vulvar biopsies or surgical specimens. Predictive biomarkers for anti-EGFR and anti-PD-1/PD-L1 drugs are needed. Enough preclinical data supporting anti-angiogenic target therapies in clinical trials are existing. Hormonal receptor expression deserves further investigation.Inaccuracy localization and intrinsic radioresistance of solid tumors seriously hindered the clinical implementation of radiotherapy. In this study, we fabricated hyaluronic acid-functionalized gadolinium oxide nanoparticles (HA-Gd2O3 NPs) via one-pot hydrothermal process for effective magnetic resonance (MR) imaging and radiosensitization of tumors. By virtue of HA functionalization, the as-prepared HA-Gd2O3 NPs with a diameter of 105 nm showed favorable dispersibility in water, low cytotoxicity, and excellent biocompatibility and readily entered into the cytoplasm of cancer cells by HA receptor-mediated endocytosis. Importantly, HA-Gd2O3 NPs exhibited high longitudinal relaxivity (r1) 6.0 mM-1S-1 as MRI contrast agents and radiosensitization enhancement in a dose-dependent manner. These finds demonstrated that as-synthesized HA-Gd2O3 NPs as bifunctional theranostic agents have great potential in tumors diagnosis and radiotherapy.
My Website: https://www.selleckchem.com/products/kya1797k.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team