Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Benzo(a)pyrene toxicity equivalent concentration had an average content of 32 ± 37 ng/m-3 over the sampling period, with dibenzo(a,h)anthracene (50.7%) and dibenzo(a,l)pyrene (26.4%) being the largest contributors. The risk of developing lung cancer due to inhalation exposure to outdoor PAHs was calculated at 12.0‰ using the overall population attributable fraction (PAF). Our results estimate that, due to PAH exposure in Dalian, the average excess lung cancer risk during a person's lifetime is 35.7 cancer cases per one million inhabitants. Acid rain containing SO42- and NO3- in China has been a public concern for decades. However, a decrease of SO2 has been recorded since the government enacted a series of policies to control its emission. To comprehensively evaluate the consequence of realistic and future acid deposition scenarios, this study explored the effects of mixed acid rain with different molar ratios of SO42- and NO3- (01, 10, 21, 11, and 12) on stream leaf breakdown through a microcosm experiment. A significant inhibition of leaf breakdown rate was observed when the ratio was 12 with reduced microcosm pH, fungal biomass, enzyme activities as well as the frequencies of hub general in the fungal community. In conclusion, the ratio of SO42- and NO3- in acid rain was an important factor that could have a profound impact on leaf breakdown, even on ecosystem structure and functioning of streams. Nano-sized Fe2Zr2-xWxO7 system was prepared using the Pacini method where x = 0, 0.05, 0.1 and 0.15. All the samples were characterized using chemical analysis, X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), transmission electron microscopy (TEM), UV-vis diffuse reflectance measurements (DRS) and surface area measurements. The undoped Fe2Zr2O7 was crystallised in the cubic fluorite phase as a major phase in addition to rhombohedral phase of Fe2O3 and monoclinic phase of ZrO2 as the minor phases. Meanwhile, single cubic fluorite phase was defined for Fe2Zr0.85W0.15O7 sample. The last has the lowest band gap (1.69 eV) and the highest surface area (106 m2/g). From TEM, the average particle size of the prepared samples was in the range of (3-7 nm). The photocatalytic efficiency of the prepared Fe2Zr2-xWxO7 system was manifested by the degradation of methylene blue and real textile wastewater of blue colour. Ascending degradation efficiency was exhibited with increasing tungsten concentration which is in accordance with their band gap as well as their surface area values. The degradation rate using Fe2Zr0.85W0.15O7 sample obeys the pseudo-first order kinetic at the optimum degradation conditions (1.5 g/L catalyst and pH11). Fe2Zr0.85W0.15O7 showed promising photocatalytic activity for real textile wastewater where the 69% COD removal was obtained under the same conditions used for methylene blue degradation. Road dust is a key repository for PAHs and transformed PAH products (TPPs) generated from natural and anthropogenic sources in the urban environment. Eventhough PAHs and TPPs are prone to post-emission photochemical processes, very limited studies exist on the subject for road dust. This knowledge gap is of particular concern since some of the resultant TPPs are notably more carcinogenic than their precursor PAHs. This study evaluated the role of 254 nm ultraviolet (UV) photons on the photochemistry of PAHs and TPPs in road dust. The findings show that UV irradiation had varying effects on the fate of analytes, particularly naphthalene (NAP), phenanthrene (PHE), 7, 12-dimethylbenz(a)anthracene (DMBA), 1-hydroxypyrene (HPY), 1-nitropyrene (1NPY), pyrene (PYR) and 5-nitroacenaphthene (5NAC). Photochemical relationship was identified between PYR, 1NPY and HPY, and DMBA and benzo(a)anthracene. Unlike carbonyl-PAHs, parent PAHs, nitro-PAHs and hydroxy-PAHs can originate from photolysis. Photon irradiation durations of 3, 6 and 7.5 h had the most intense influence on the photolytic process with 7.5 h as optimum. The photochemical rate at optimum irradiation duration shows an increasing trend of NAP less then PHE less then 1NPY less then DMBA less then 5NAC less then HPY with respective estimates of 0.08, 0.11, 0.21, 0.22, 0.43, and 0.59 mg kg-1 hr-1. Physicochemical properties of analytes such as index of refraction and vapour pressure (in logarithmic form) had an inverse effect on photolysis. The knowledge generated is significant for the in-depth understanding of the fate of PAHs and TPPs on urban road surfaces and contributes to the greater protection of human health and the environment. BACKGROUND Japan and South Korea represent "outliers" among rich nations with regard to having achieved high life expectancy but also ranking near the bottom on United Nations indices of gender equality. In the present study, we compared gender inequalities in self-rated health (SRH) across the life course captured in nationally representative surveys from South Korea and Japan. Our comparative analysis focused on the following questions, (1) Do Japan and South Korea exhibit similar patterns of gender inequalities in health as found in western settings (e.g. the "gender paradox" whereby women enjoy longer life expectancy, but worseself-rated health compared to men)? (2) Can gender differences in educational attainment and income account for gender differences in health in Japan & Korea? (3) Do gender inequalities in self-rated health differ over the life-course in Japan compared to South Korea? METHODS Cross-sectional data were drawn from nationally representative surveys in South Korea and Japan. We analyzed data for 239,076 participants aged 20 years or older (226,105 in South Korea and 12,971 in Japan). Selleckchem VX-680 We evaluated the gender gap in poor SRH between two countries using logistic regression models controlling for covariates sequentially. RESULTS (1) The absolute female/male gap in prevalence of poor SRH was much narrower in Japan compared to South Korea; (2) the prevalence ratios of poor SRH (women relative to men) were significantly higher in South Korea than in Japan after retirement age; (3) but the difference in the prevalence ratios of poor SRH by gender between two countries largely disappeared after adjusting for educational attainment & comorbidity. CONCLUSIONS Each country needs to analyze their specific situations to understand what determines their population health status. In addition, there must exist other reasons for the"gender paradox" - i.e. why Japan & Korea have managed to achieve high longevity without gender equality.
Homepage: https://www.selleckchem.com/products/VX-680(MK-0457).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team